
Strings
Or, arrays Pt 2

Help Sessions and Revision
Sessions

Assignment 1

Releasing soon–
Watch the Assignment
Walkthrough live stream

–

Watch the Catchup-up video–
Submission in Week 7?–
Worth 20%–

Arrays recap

A collection of data, all of the same
type. (homogonous)

–

We have a single identifier for the
entire array

–

It is a random access data
structure, meaning we can access
any element in the array at any time

–

The array declaration syntax
int ice_cream_per_day[7];

Declare + initialise

int ice_cream_per_day[7] = {3, 2,
1, 2, 1, 3, 5};

^ Note you can only do this when
you declare, not later!

int ice_cream_per_day[7] = {};

^ Will initialise all elements to 0

Some corrections

int my_data[] = {3, 2, 1, 2, 1, 3,
5};

^ Will create a 7-element array

int my_data[14] = {3, 2, 1, 2, 1,
3, 5};

^ Will create a 14-element array, with
the first 7 elements then 7 0'd out

Accessing elements

int first_day_ice_creams =
ice_cream_per_day[0];

Will retrieve the int 3

Writing elements

ice_cream_per_day[0] = 5;

Strings

Strings!

Strings are multi-character words–
"Jake Renzella" -> is a
string with 13 characters!

–

Strings are great! They are
everywhere!

–

Bad news

C doesn't have a
string data type :(

Good news

C has arrays! :)

An int array

int numbers[7] = {3, 2, 1, 2, 1,
3, 4}

A char array

We can build our own string type by
using an array of chars!

Strings in C are char arrays

A collection of characters–
C does know how to work with
char[] s

–

#include <stdio.h>

int main(void) {
 char name[3] = {'G', 'a',
'b'};
 // change name to Jake
 // :(can't, won't fit

 return 0;
}

#include <stdio.h>
#define MAX_STR 50

int main(void) {
 char name[MAX_STR] = {'J',
'a', 'k', 'e'};

 return 0;
}

New problem

How does C know where the
string ends?

char name[MAX_STR] = {'J',
'a', 'k', 'e'};

The null terminator

Remember in C, we don't know when
arrays end

–

We have to keep track of the length
ourselves

–

We can't always do this with char[] ...–
Instead, we place a special character
called the null terminator at the end of our
character arrays \0

–

char[]

Notice the \0 at the end! This
means that C will know when it
reaches the end of the array

How to use strings in C

char word[] = {'h', 'e', 'l',
'l', 'o', '\0'};

Because strings are character
arrays, the type is char[]

–

There are two ways to declare a
string, here's one:

–

Anyone think that's annoying?

Strings are very common

So there are easier ways to use them:

char word[] = "hello";

This is exactly the same as the
previous example

–

It includes the null terminator!–

String literals

"Jake!"

uses double quotes " to wrap the string
literal

–

single quote for characters!–

Used to assign strings to char[] easily:

char name[] = "Jake Renzella";

–

Using strings

printing: printf or fputs–
scanning: fgets–
Both included in <stdio.h>–

fgets

Reads a string from the terminal–
fgets(array[], length, stream)–
array[] -> The array that the string will
be stored

–

length -> The number of characters that
can be read in

–

stream -> The origin of the string (we
always use stdin)

–

fgets usage

// Declare the array which will
contain the string. Note, we don't
know how big the string will be, so
let's come up with a maximum.
char my_string[MAX_LENGTH]

// read the string in
fgets(my_string, MAX_LENGTH,
stdin);

Reading strings in a loop

We can read until CTRL+D is entered
in the terminal by calling fgets in a
loop

–

fgets() stops reading when either
length-1 characters are read, newline
character is read or an end of file is
reached, whichever comes first

–

Reading strings in a loop
#include <stdio.h>

// I know my string will never need to be more than 15
chars
#define MAX_LENGTH 15

int main(void) {
 char name[MAX_LENGTH];
 printf("Enter your name: ");

 // fgets reads the entire string, including the
newline character
 while (fgets(name, MAX_LENGTH, stdin) != NULL) {
 // every time this runs, we update `name`!
 }
}

Printing strings

fputs(array[], stream)

array[] -> the character array to
be printed

–

stream -> the location to print,
always use stdout in
COMP1511

–

You can printf a string with %s, but there
are security problems with this
approach, so we avoid it and use fputs

Printing strings

char name[] = "Jake"
fputs(name, stdout)

^ Why doesn't fputs need the
LENGTH, like fget ?

Other useful string functions

strlen() -> gives us the length of the string
(excluding the \0).

–

strcpy() -> copy the contents of one string to
another

–

strcat() -> join one string to the end of another
(concatenate)

–

strcmp() -> compare two strings–

strchr() -> find the first occurrence of a character

note: some of these may require #include
<string.h>

–

Demo

Feedback

https://forms.office.com/r/K3PjvWebtD

https://forms.office.com/r/K3PjvWebtD

