
COMP1511
Static arrays
Week 3 Lecture 2

functions/procedures
recap

Reusable blocks of code–
Callable multiple times–
variables within a
function are scoped to
that function

–

PI function

Would be annoying to write this
every time we need to calculate!

double pi() {
 double sum = 0.0;
 for (int i = 0; i < 1000;
i++) {
 sum += (-1.0) * pow(1.0 /
2.0, i) / (i + 1);
 }
 return 4.0 * sum;
}

Forward declaration

int main(void) {
 double calculated_pi = pi();
}

double pi() {
 double sum = 0.0;
 for (int i = 0; i < 1000; i++) {
 sum += (-1.0) * pow(1.0 / 2.0,
i) / (i + 1);
 }
 return 4.0 * sum;
}

^ problem! main doesn't know that pi
exists yet!

Forward declaration

double pi();

int main(void) {
 double calculated_pi = pi();
}

double pi() {
 double sum = 0.0;
 for (int i = 0; i < 1000; i++) {
 sum += (-1.0) * pow(1.0 / 2.0,
i) / (i + 1);
 }
 return 4.0 * sum;
}

^ Solved! We forward declared pi!

Quick functions recap
demo

Arrays

So far, we can store a
single item in each

variable

What if you wanted to
store many values?

Number of ice creams eaten

int day_1 = 2;
int day_2 = 3;
int day_3 = 3;
int day_4 = 5;
int day_5 = 7;
int day_6 = 1;
int day_7 = 3;
// Any day with 3 or more scoops is
too much!
if (day_1 >= 3){
 printf("Too much ice cream\n");
}
if (day_2 >= 3) {...

Seem repetitive?

Many variables would
clutter the program

–

Many variables would
not always be efficient

–

Data structures

Are common structures (not
structs) used to store
multiples of data

–

Usually (especially in
COMP1511) of the same
data type

–

Can scale, easily storing a
handful, up to thousands, or
more elements of data!

–

Data structures in COMP1511

We will look primarily at two
data structures:

arrays (today)–

linked lists (future)

These are very, very powerful
data structures you will use
forever

–

Arrays

A collection of data, all of the
same type. (homogonous)

–

We have a single identifier for
the entire array

–

It is a random access data
structure, meaning we can
access any element in the
array at any time

–

Arrays

We can ready or modify
individual elements

–

It is a contiguous data
structure

–

contigu-what?
Let's visualise arrays

Static arrays have a set
size

(which you specify)

int array

This int array will store 5
integers

–

32bit * 5 elements = 160 bits
of memory used

–

The array declaration
syntax
int
ice_cream_per_day[7];

Declare + initialise

int ice_cream_per_day[7]
= {3, 2, 1, 2, 1, 3, 5};

^ Note you can only do this
when you declare, not later!

int ice_cream_per_day[7]
= {};

^ Will initialise all elements
to 0

int ice_cream_per_day[7]
= {3, 2, 1, 2, 1, 3, 5};

Creates:

Accessing elements

int first_day_ice_creams
= ice_cream_per_day[0];

Writing elements

ice_cream_per_day[0] =
5;

arrays

!

 loops
The power of arrays

int ice_cream_per_day[7] =
{3, 2, 1, 2, 1, 3, 5};

// read each element
ice_cream_per_day[0];
ice_cream_per_day[1];
ice_cream_per_day[2];
ice_cream_per_day[3];
ice_cream_per_day[4];
ice_cream_per_day[5];
ice_cream_per_day[6];

^ Does this look repetitive?

If only we had a way to count :(

Bad

int
ice_cream_per_day[7] =
{3, 2, 1, 2, 1, 3, 5};

// read each element
printf("%d\n",
ice_cream_per_day[0]);
printf("%d\n",
ice_cream_per_day[1]);
printf("%d\n",
ice_cream_per_day[2]);
printf("%d\n",
ice_cream_per_day[3]);
printf("%d\n",
ice_cream_per_day[4]);
printf("%d\n",
ice_cream_per_day[5]);
printf("%d\n",
ice_cream_per_day[6]);

Good

int
ice_cream_per_day[7] =
{3, 2, 1, 2, 1, 3, 5};

int i = 0;
while (i < 7) {
 printf("%d\n",
ice_cream_per_day[i]);
 i++; // i = i + 1;
}

Demo

Feedback

https://forms.office.com/r/K3PjvWebtD

https://forms.office.com/r/K3PjvWebtD

