
Week 3 Lecture 1
Procedures and functions

Week 2 recap

Nested loops

 col
row 1 2 3 4 5
 1 2 3 4 5
 1 2 3 4 5
 1 2 3 4 5
 1 2 3 4 5

Simply, a while loop within a while loop–
Useful for 2-dimensional data (like grids)–

#include <stdio.h>

#define ROWS 5
#define COLUMNS 5

int main() {
 int i = 0;

 while (i < ROWS) {
 int j = 1;
 while (j <= COLUMNS) {
 printf("%d ", j);
 j++;
 }
 printf("\n");
 i++;
 }

 return 0;
}

This is an example of a nested loop
which prints the grid from the previous
slide

structs

struct pokemon {
 int hp;
 double weight
};

A defined structure of
data types, each
accessible

–

Memory is set aside for
each field in each struct

–

Useful for assigning a
variable to an organised
record of data

–

enums

enum elemental_type {
FIRE, WATER, GRASS, DARK
};

A possible set of values–
Useful for creating labels
in your code

–

Week 3 Lecture 1
Procedures and functions

Functions

So far, you have used functions in
your code

–

Examples include printf ,
scanf , main ...

–

What actually are these?–

Functions

Functions are reusable blocks of
code

–

Functions (may) have:–
input (parameters)–
actions (side effects)–
output (results)–

Functions

We call functions to execute their
body, providing any input necessary

–

We can access the result of the
function

–

We can call a function from
anywhere in our programs

–

Function definition example

int add(int x, int y) {
 return x + y;
}

int ... -> return type (what type should the
result be

–

add -> the name of the function–

(int x, int y) -> the parameters, what
sequence and type of input must be passed in?

–

return -> evaluate the expression and return the
result

–

Function call syntax

add(2, 5);

After we define functions, we want to use
them

–

The () after the name of the function
means call

–

We must pass in the correct sequence of
arguments of the correct type (int add
required two integers).

–

Function calling

We can pass in variables too

// A simple function which accepts two integers
(x, y),
// and returns the result (int) of adding them.
int add(int x, int y) {
 return x + y;
}

int main(void) {
 int year_born = 1994;
 int age = 29;

 add(year_born, age);
}

Retrieving the result of a function

// A simple function which accepts two integers
(x, y),
// and returns the result (int) of adding them.
int add(int x, int y) {
 return x + y;
}

int main(void) {
 int year_born = 1994;
 int age = 29;

 int current_year = add(year_born, age);
}

DEMO

Functions terminology

return type -> the type of data returned by the
function

–

result -> the actual value returned from a
function call

–

parameters -> the type, and sequence of data to
be passed into a function (the placeholders)

–

argument -> the actual value passed into a
function's parameters when called

–

return -> the keyword used to end a function and
return the result following

–

Procedures
not a real thing in C, but a useful

way to think about some types and
roles of functions

Procedures

Not all functions have to return a result–
We call these void functions, or
procedures

–

Procedures do something, but don't
have a result

–

procedures (usually) have a side-effect–

procedures

shut_door

side effect?

result?

functions

check_door_shut

side effect?

result?

procedure syntax

void check_door_shut() {

}

This is a function which returns
nothing (void)

–

We could call this a procedure–

Order matters

Functions/procedures have to be
defined before they care called

we can get around this with
function prototypes

–

Place int add(int x, int
y); at the top of your file to define
the int add function for later use

–

When writing functions in your
program, think:

What must I give this function so it can
do its job?

–

What should it be named?–
What should it return back to me to
achieve its goal? (If anything).

–

Am I re-writing code that could be
turned into a reusable function?

–

Functions are very important

They change how we think about
code

–

When you come across useful,
repeatable functionality - make it
a function

–

0, 1, ∞

If you have no need for a function yet,
don't write it.

–

If you have a single need for some
code, write it but don't make it a
function

–

If you have a second need for the
code, make it a function

–

Feedback

https://forms.office.com/r/K3PjvWebtD

https://forms.office.com/r/K3PjvWebtD

