
Week 2 Lecture 2
Custom Data Types

Last lecture

Control flow
conditions
if/else if/else
while loops
scans

Today

Nested loops
Custom data types

Live lecture code
https://cgi.cse.unsw.edu.au/~cs1511/24T2/live/week_2/

Link will be pasted in the Stream Chat

https://cgi.cse.unsw.edu.au/~cs1511/24T2/live/week_2/

if statements recap

if(<condition>) {
 do_if_true();
} else if(<second_condition>) {
 do_if_second_true();
} else {
 do_if_both_false();
}

A condition is a true/false value (1/0)–
We can execute an expression to
calculate the condition

–

my_age > drinking_age -> will
evaluate to true/1 if age is greater
than drinking_age

–

Conditions are useful in many places,
if statements, while loops, etc.

–

While loops

while(<condition>) {
 do_something_over_and_over();
}

if true, run the body–
at end of body, check condition
again

–

if true, run the body...–

Nested loops

Simply having a while loop
within a while loop

–

Each time the outer loop runs, the
inner loop runs an entire set (the
inner loop runs a lot)

–

Why are nested loops useful?

Why are nested loops useful?

How can we print something like
this?

1 2 3 4 5
1 2 3 4 5
1 2 3 4 5
1 2 3 4 5
1 2 3 4 5

#include <stdio.h>

#define ROWS 5
#define COLUMNS 5

int main() {
 int i = 0;

 while (i < ROWS) {
 int j = 1;
 while (j <= COLUMNS) {
 printf("%d ", j);
 j++;
 }
 printf("\n");
 i++;
 }

 return 0;
}

What about a half-pyramid?

1
12
123
1234
12345

Week 2 Lecture 2
Custom Data Types

Custom data types

So far, we have used built-in C
data types (int, char, double)

–

These store a single item of that
type

–

What if we want to store a group
of related data?

–

int main(void) {
 int my_age = 20;
 char initial = 'J';
 int UNSW_year = 2;

 return 0;
}

^ These three things are related...

We can define our own data
types (structures) to store a

collection of types

Enter the struct

UNSW_student struct

struct UNSW_student {
 int age;
 int year_number;
 double WAM;
}

To use, we simply say:

struct UNSW_student Jake;

struct (structures)

Are variables made up of other
variable(s)

–

They have a single identifier–
Can still access the sub-variables–

Defining a struct

struct <struct_name> {
 data_type identifier;
 data_type identifier;
}

Example

struct UNSW_student {
 int age;
 int year_number;
 double WAM;
}

Defining a struct

struct <struct_name> {
 data_type identifier;
 data_type identifier;
}

Example

struct UNSW_student {
 int age;
 int year_number;
 double WAM;
}

^ Notice, no values... we are only defining.

Full program example

#include <stdio.h>

struct UNSW_student {
 int age;
 int year_number;
 double WAM;
}

int main(void) {
 struct UNSW_student Jake;

 return 0;
}

But how do I access the actual
data...

the . operator

struct coordinate {
 int x;
 int y;
}

struct coordinate loc;

loc.x
loc.y

DEMO

Another custom data type
The enum

Imagine I wanted to store days
of the week

1. int day_of_week = 1;
2. char day_of_week = 'm';

3. #define MONDAY 1
4. #define TUESDAY 2

The problem

Have to remember that 1 is
Monday

–

Could accidentally set 8 to
day_of_week

–

Enums (the solution)

Store a range or set of possible
values

–

Assigns a more meaningful name
to state

–

Syntax

enum enum_name { state_1,
state_2, state_3... };

Example

enum weekdays { Mon, Tue, Wed,
Thu, Fri, Sat, Sun };

Using enums

#include <stdio.h>

enum weekdays { Mon, Tue, Wed, Thu,
Fri, Sat, Sun };

int main(void) {
 enum weekdays day;
 day = Sat; // <-- this is why enums
are useful

 return 0;
}

Under the hood

#include <stdio.h>

enum weekdays { Mon, Tue, Wed, Thu, Fri,
Sat, Sun }

int main(void) {
 enum weekdays day;
 day = Sat;
 printf("The actual value in day is:
%d\n, day);

 return 0;
}

Advantages over other approaches

We provide limitations on the possible
values (has to be defined in the enum)

–

We give a nice label to values (Sat)–
We don't have to remember that 1 is
Monday (or was it 0?

!

)
–

Could use #define but these can
clutter our code if we have many

–

struct

!

 enum

enum student_status { Enrolled,
Withdrawn, Leave }

struct student {
 enum student_status status;
 int age;
}

Feedback

