
Week 2 Lecture 2
Custom Data Types

Last lecture

Control flow
conditions
if/else if/else
while loops
scans

Today

Nested loops
Custom data types

Live lecture code
https://cgi.cse.unsw.edu.au/~cs1511/24T2/live/week_2/

if statements recap

if(<condition>) {
 do_if_true();
} else
if(<second_condition>) {
 do_if_second_true();
} else {
 do_if_both_false();
}

https://cgi.cse.unsw.edu.au/~cs1511/24T2/live/week_2/

A condition is a true/false value
(1/0)

–

We can execute an expression
to calculate the condition

–

my_age > drinking_age
-> will evaluate to true/1 if
age is greater than
drinking_age

–

Conditions are useful in many
places, if statements, while
loops, etc.

–

While loops

while(<condition>) {

do_something_over_and_over(
);
}

if true, run the body–
at end of body, check
condition again

–

if true, run the body...–

Nested loops

Simply having a while
loop within a while
loop

–

Each time the outer loop
runs, the inner loop runs
an entire set (the inner
loop runs a lot)

–

Why are nested loops
useful?

Why are nested loops
useful?

How can we print
something like this?

1 2 3 4 5
1 2 3 4 5
1 2 3 4 5
1 2 3 4 5
1 2 3 4 5

#include <stdio.h>

#define ROWS 5
#define COLUMNS 5

int main() {
 int i = 0;

 while (i < ROWS) {
 int j = 1;
 while (j <= COLUMNS) {
 printf("%d ", j);
 j++;
 }
 printf("\n");
 i++;
 }

 return 0;
}

What about a half-
pyramid?

1
12
123
1234
12345

Week 2 Lecture 2
Custom Data Types

Custom data types

So far, we have used
built-in C data types (int,
char, double)

–

These store a single item
of that type

–

What if we want to store
a group of related data?

–

int main(void) {
 int my_age = 20;
 char initial = 'J';
 int UNSW_year = 2;

 return 0;
}

^ These three things are
related...

We can define our own
data types (structures)
to store a collection of

types

Enter the struct

UNSW_student struct

struct UNSW_student {
 int age;
 int year_number;
 double WAM;
}

To use, we simply say:

struct UNSW_student
Jake;

struct (structures)

Are variables made up of
other variable(s)

–

They have a single
identifier

–

Can still access the sub-
variables

–

Defining a struct

struct <struct_name> {
 data_type identifier;
 data_type identifier;
}

Example

struct UNSW_student {
 int age;
 int year_number;
 double WAM;
}

Defining a struct

struct <struct_name> {
 data_type identifier;
 data_type identifier;
}

Example

struct UNSW_student {
 int age;
 int year_number;
 double WAM;
}

^ Notice, no values... we are only
defining.

Full program example

#include <stdio.h>

struct UNSW_student {
 int age;
 int year_number;
 double WAM;
}

int main(void) {
 struct UNSW_student Jake;

 return 0;
}

But how do I access the
actual data...

the . operator

struct coordinate {
 int x;
 int y;
}

struct coordinate loc;

loc.x
loc.y

DEMO

Another custom data
type
The enum

Imagine I wanted to
store days of the week

1. int day_of_week = 1;
2. char day_of_week =
'm';

3. #define MONDAY 1
4. #define TUESDAY 2

The problem

Have to remember that 1
is Monday

–

Could accidentally set 8
to day_of_week

–

Enums (the solution)

Store a range or set of
possible values

–

Assigns a more
meaningful name to
state

–

Syntax

enum enum_name {
state_1, state_2,
state_3... };

Example

enum weekdays { Mon,
Tue, Wed, Thu, Fri, Sat,
Sun };

Using enums

#include <stdio.h>

enum weekdays { Mon, Tue,
Wed, Thu, Fri, Sat, Sun };

int main(void) {
 enum weekdays day;
 day = Sat; // <-- this
is why enums are useful

 return 0;
}

Under the hood

#include <stdio.h>

enum weekdays { Mon, Tue,
Wed, Thu, Fri, Sat, Sun }

int main(void) {
 enum weekdays day;
 day = Sat;
 printf("The actual value
in day is: %d\n, day);

 return 0;
}

Advantages over other
approaches

We provide limitations on the
possible values (has to be defined
in the enum)

–

We give a nice label to values (Sat)–
We don't have to remember that 1
is Monday (or was it 0?

!

)
–

Could use #define but these can
clutter our code if we have many

–

struct

!

 enum

enum student_status {
Enrolled, Withdrawn,
Leave }

struct student {
 enum student_status
status;
 int age;
}

Feedback

