
COMP1511 Week 2 Lecture 1
Control Flow

Quick notices

Help sessions starting early! Keep
an eye on course page

–

Keep the feedback coming!–

Feedback overview

We like the lecture format, quality
and in-person lectures

–

We, on average, seem to like the
pace

–

We would like to see the slides up
earlier

–

Less typos!–

Last week

Went to tute/lab
hello_world.c
memory
reading/writing to terminal
arithmetic

This week

control flow
logical operators
repetition

Input/Output recap

printf()

Outputs text to terminal–
stands for print formatted–
Need to import #include
<stdio.h> to use

–

What will this print out?

int course_code = 1511;
printf("Welcome to COMP%d\n",
course_code);

x: top

y: left

printf Usage with variables

int course_code = 1511;
printf("Welcome to COMP%d\n",
course_code);

prints:

Welcome to COMP1511
jrenzella:~$

Each format flag (%d) is mapped to a
passed in variable at the end. Each
variable must have a corresponding
%d/%lf, etc.

newlines

printf("Hello
world!")

Hello
world!jrenzella:~$

\n

printf("Hello
world!\n")

Hello world!
jrenzella:~$

scanf()

reads text from terminal (input)–
stands for scan formatted–
Need to import #include
<stdio.h> to use

–

scanf usage

int age;
printf("Enter your age: ");
scanf("%d", &age);

^ reads an integer from the terminal and stores
it in age .

%d tells scanf to look for a decimal
integer .

–

We need to use & before the variable, more
on that in a few weeks...

–

Week 2 Lecture 1
Control Flow

Control Flow

Sometimes we need to make
decisions in our programs

–

We can make our programs branch
between sets of instructions

–

To do this, we use the if
statement.

–

Enter the if statement

if

Determines the result of a
boolean (true/false) question

–

if true, do something–
eg: if an int x is even, do
something...

–

x: left

y: top

Understanding true and false in C

true and false are integers in C

true -> 1–
false -> 0–

later versions of C added true and
false as synonyms (need to
#include <stdbool.h> to use
these)

–

Added in 1999!

stdbool.h stands for standard boolean library. Gives us
some these types. See
https://en.wikibooks.org/wiki/C_Programming/stdbool.h
for more info.

if statement syntax

if(<condition>) {
 do_something();
 do_something_else();
}

if statement -> requires a condition, executes
if true

–

<condition> -> something that evaluates to
true/false

–

{...} -> everything inside will run if condition
is true

–

if statement example

if(1) {
 printf("The condition was
true!\n");
}

^ Will this print anything?

true and false are keywords
in C

–

Yes! true evaluates to true, so the
printf statement executes.

if statement example 2

if(false) {
 printf("The condition was
false!\n");
}

^ Will this print anything?

No, false evaluates to false, so the block
does not run at all.

if statement example 3

int x = 5;
if(x >= 0) {
 printf("x is a positive
number!\n");
}

^ Will this print anything?

Yes, >= checks if the left is greater than
or equal to the right, so in this case is 5
greater than or equal to 0, which is...
true! true things run!

Wait what is >= ?

Boolean operators

All evaluate to either true (1) or false (0)

< less than–
> greater than–

<= less than or equal to–
>= greater than or equal to–

== is equal to–
!= not equal to–

They determine if the thing on the left is
less than/greater than/equal to, etc the
thing on the right.

Be careful! == and = are not
the same thing!

They look the same, but are not... = is
assignment, == is equivalence.

Questions for the audience

4 < 21.
4 > 22.
4 <= 43.
5 >= 44.
3 == 35.
'A' != 'B'6.

false1.
true2.
true3.
true4.
true5.
true6.

Demo

More control flow

The else statement

Sometimes we want to run a block
of code if the if statement is
false!

–

the else statement must be
associated with an if statement.

–

it only runs if the condition
evaluates to false

–

else statement syntax

if(<condition>) {
 do_something();
 do_something_else();
} else {
 do_if_false();
}

Notice there is no condition, because
one is not needed

–

else is optional–

else statement example

int x = -5;
if(x > 0) {
 printf("x is positive\n");
} else {
 printf("x is negative\n");
}

chaining if statements

We can chain multiple if statements
to check for multiple options

if(<condition>) {
 do_something();
 do_something_else();
} if (<second_condition>) {
 do_if_second_condition();
}

What if we want to check if two
things are true?

Boolean operators

&& -> and operator–

|| -> or operator–

! -> not operator–

putting it all together

int age = 15;
int drinking_age = 18;

if(age > 0 && age < 18) {
 // age is valid, but not legal
} else if (age > 18) {
 // legal age
} else {
 // invalid age!
}

Live coding

Repetition
Repetition
Repetition
Repetition

Why do we need to loop?

Programmers are lazy, we don't like
repeating ourselves...

We can make computers do that for
us!

What are some real world
examples?

Enter the while statement

Repetitive tasks shouldn't require
repetitive code

–

C starts at main and executes
each line in sequence

–

We can control that sequence–

There are three categories of while loops:

This is the general while loop syntax:

while (<expression>) { //while the expression
is true
 //do something over and over
} // when the block ends, jump back to the the
start of the while loop

look familiar?

counting loops–
conditional loops–
sentinel loops–

Same syntax as if statements!

counting loops

int number_of_lines = 5;
int i = 0;

while (I < number_of_lines) {
 printf("hey!\n");
 i = i + 1;
}

do something n amount of times
(counting up to n)

–

conditional loops

Example: loop until number > 100

int dumbel_kg = 5;
int max_kg_to_lift = 100;
int amount_lifted = 0;

while (amount_lifted < 100) {
 printf("Keep lifting jake!\n");
 amount_lifted = amount_lifted + dumbel_kg;
}

do something until the condition is true–
we don't know how many times we will need to loop–

sentinel loops

Example: loop until number > 100

int dumbel_kg = 5;
int max_kg_to_lift = 100;
int amount_lifted = 0;
int finished_lifting = 0;

while (!finished_lifting) {
 printf("Keep lifting jake!\n");
 amount_lifted = amount_lifted + dumbel_kg;

 if (amount_lifted > 100) {
 finished_lifting = 1;
 }
}

similar to conditional loops–
we manually flag when we want to stop looping using the sentinel
variable

–

In this particular example, the
conditional loop version is better,
however sentinel loops give us more
fine-grain control over when we want to
stop looping.

DEMO

Feedback

