
Week 1 Lecture 2
Variables and Constants

So far

Welcome and introductions–
Getting started–

Today

Memory–
Data (variables +
constants)

–

Expressions–

A brief recap

Out first program

#include <stdio.h>

int main(void) {
 printf("Hello,
world\n");
 return 0;
}

How do computers store
data?

How do computers store data?

Computers are electrical–
Electricity is either flowing, or
not

–

We store electrical charge (or
lack thereof) in a large number
of on-off switches

–

We call these switches "bits"
(the smallest possible unit)

–

0 or 1–

How do computers store
data?

Alone, a single bit can't do
much...

–

What if we group them
together?

–

Activity - Spell your name
Letter Binary Sequence Letter Binary Sequence

A 00000 B 00001

C 00010 D 00011

E 00100 F 00101

G 00110 H 00111

I 01000 J 01001

K 01010 L 01011

M 01100 N 01101

O 01110 P 01111

Q 10000 R 10001

S 10010 T 10011

U 10100 V 10101

W 10110 X 10111

Y 11000 Z 11001

01001 00000 01010 00100

By agreeing on what a
sequence of 0 s and 1 s
means, we can store and
retrieve data!

Where can we put all these
bees bits?

Different types of memory

RAM (memory)–
this is mostly what we
care about in 1511

–

HDD/SDD (persistant data)–
Tapes?–

Different types of memory too

Whiteboard

Q: How do we use memory
in our programs?

A: Variables

A label for a piece of memory–
"variable" because the value
in memory can change

–

A certain number of bits
required to store that data
type

–

Stores a specific type of data–

To make a variable, you
need:

It's type–
It's name–

Some data types

int -> an integer, a whole
number (1, -5, 100)

–

char -> a single character
('a', 'V', ' ')

–

double -> a floating point
number (3.14159)

–

Each type has different
memory requirements

int -> 32 bits in C, 4 bytes–
char -> 8 bits, 1 byte–
double -> 64 bits, 8bytes–

And therefore limits...

int -> -2,147,483,648
to 2,147,483,647

–

char -> -128 to 127
chars

–

double ->
-2,147,483,648 to
+2,147,483,647

–

Variable names

Surprisingly important...–
Should describe what it's storing–
You can pick whatever you want
(mostly)

–

in C, always use lowercase
letters

–

name is different to nAme–
seperate words by underscores
first_name

–

Naming variables is an art...
COMP1531 goes into more
detail

int

A whole number, with no
fractions or decimals

–

Most commonly uses 32 bits
(which is also 4 bytes)

–

This gives us exactly 2
different possible values

–

Exact ranges from
-2147483648 to 2147483647

–

char

A char type is used to store a single
character

–

chars have to be wrapped in single
quotes, like: 'a'

–

Each char is associated with an
integer

–

We can convert chars to ints, and
back

–

'a' and 'A' are different characters!–
chars are just ints under the hood...–

double

A double-sized floating point number–
A decimal value - "floating point"
means the point can be anywhere in
the number

–

Eg: 10.567 or 105.67 (the points are
in different places in the same digits)

–

It’s called "double" because it’s
usually 64 bits, hence the double size
of our integers (or 8 bytes)

–

Variables syntax
To declare a variable, you use:

<type> <name>;

int age;–
char first_initial;–
double pi–

Demo

#include <stdio.h>

int main(void) {
 // declare an int.
 int my_age;

 // assign a value to the
int.
 my_age = 25;

 // whoops, I wish... let's
update
 my_age = 28;

 return 0;
}

OK we can store some
data... so what?

Printing variables using
printf

We can print variables to our
terminal!

–

We describe the format of how
we want text printed, then the
actual values.

–

To print out a variable value, we
use format specifiers with
printf

–

The format specifier (%)
indicates WHERE a value
will output within the format
string.

int my_age = 13;
printf("I am %d
years!", my_age);

–

The format specifier must
match the data types passed

%c for chars–
%d for ints “decimal integer”–
%lf for “long floating point
number” (a double)

–

printf needs to know
what type it should expect in
what order, because...

–

You can have multiple
variables:
int diameter = 5;
double pi = 3.141;
printf("The diameter is %d,
pi is %lf", diameter, pi);

Demo

Break - lecture feedback

writing

!

 reading

scanf

Scan Formatted–
Reads input from the user in
the same format as printf

–

Format specifiers %d , %lf ,
%c are used in the same way

–

The & symbol tells scanf
where to store the data (more
details later in term)

–

#include <stdio.h>

int input;
printf("Please enter your
age: ");
scanf("%d", &input);

Demo

A bit more on scanf

scanf("%d", &my_int);

scanf("%c", &my_char);

scanning an int ignores whitespace–
scanning a char does not ignore
whitespace

–

We can ignore leading whitespace
with chars:

–

scanf(" %c",
&character);

–

Constants

#define <NAME> <value>

#define PI 3.1415

A value that will never change–
More efficient to store a
constant (less memory)

–

Different syntax–
We use UPPERCASE to signify
it's a constant

–

Using variables in expressions
A lot of arithmetic operations will look
very familiar in C

adding +–
subtracting -–
multiplying *–
dividing /–
These will happen in their normal
mathematical order

–

We can also use brackets to force
precedence

–

int age = 28;
int current_year = 2023;
int year_born =
current_year - age;

printf("You were born in
%d", year_born);

chars are just ints playing
dress-up

char letter = 'b';
letter = letter + 1;
printf("%c\n", letter);

^^ Will print 'c'

Don't forget your limits

If we add two large ints together, we might go
over the maximum value, which will actually roll
around to the minimum value and possibly end
up negative

(Check out Ariane 5 explosion), a simple error
like this caused a rather large problem:
https://www.bbc.com/future/article/20150505-
the-numbers-that-lead-to-disaster)

–

Boeing 787 had to be rebooted
every 248 days (2 -hundredths of
a second)

–
31

https://www.engadget.com/2015-
05-01-boeing-787-dreamliner-
software-bug.html

–

In a less destructive example, the
video Gangham Style on YouTube
maxed out the views counter :
https://www.bbc.com/news/world-
asia-30288542

–

Doubles :(

No such thing as infinite
precision

–

We can’t precisely encode a
simple number like ⅓

–

If we divide 1.0 by 3.0, we'll get
an approximation of ⅓

–

The effect of approximation can
compound the more you use
them

–

Remember that C thinks in data
types

If either numbers in the division are
doubles, the result will be a double

–

If both numbers are ints, the result will
be an int, for example, 3/2 will not
return 1.5, because ints are only
whole numbers

–

ints will always drop whatever fraction
exists, they won’t round nicely, so 5/3
will result in 1

–

There's ways around all of this...–

