
Week 1 Lecture 2
Variables and Constants

So far

Welcome and introductions–
Getting started–

Today

Memory–
Data (variables + constants)–
Expressions–

A brief recap

Out first program

#include <stdio.h>

int main(void) {
 printf("Hello, world\n");
 return 0;
}

#include <stdio.h> -> bring in the
standard IO library
Int main(void) { -> start the main function
printf("..."); -> print text (string) to the
terminal
Return 0; -> return out of the main
function

How do computers store data?

How do computers store data?

Computers are electrical–
Electricity is either flowing, or not–
We store electrical charge (or lack thereof)
in a large number of on-off switches

–

We call these switches "bits" (the smallest
possible unit)

–

0 or 1–

How do computers store data?

Alone, a single bit can't do
much...

–

What if we group them together?–

Activity - Spell your name
Letter Binary Sequence Letter Binary Sequence

A 00000 B 00001

C 00010 D 00011

E 00100 F 00101

G 00110 H 00111

I 01000 J 01001

K 01010 L 01011

M 01100 N 01101

O 01110 P 01111

Q 10000 R 10001

S 10010 T 10011

U 10100 V 10101

W 10110 X 10111

Y 11000 Z 11001

01001 00000 01010 00100

By agreeing on what a sequence
of 0 s and 1 s means, we can
store and retrieve data!

Where can we put all these bees
bits?

Different types of memory

RAM (memory)–
this is mostly what we care
about in 1511

–

HDD/SDD (persistant data)–
Tapes?–

Different types of
memory too

Whiteboard

Show off the grid

Q: How do we use memory in our
programs?

A: Variables

A label for a piece of memory–
"variable" because the value in
memory can change

–

A certain number of bits required
to store that data type

–

Stores a specific type of data–

To make a variable, you need:

It's type–
It's name–

Some data types

int -> an integer, a whole
number (1, -5, 100)

–

char -> a single character ('a',
'V', ' ')

–

double -> a floating point
number (3.14159)

–

Each type has different memory
requirements

int -> 32 bits in C, 4 bytes–
char -> 8 bits, 1 byte–
double -> 64 bits, 8bytes–

And therefore limits...

int -> -2,147,483,648 to
2,147,483,647

–

char -> -128 to 127 chars–
double -> -2,147,483,648
to +2,147,483,647

–

Variable names

Surprisingly important...–
Should describe what it's storing–
You can pick whatever you want (mostly)–
in C, always use lowercase letters–

name is different to nAme–
seperate words by underscores
first_name

–

Naming variables is an art...
COMP1531 goes into more detail

int

A whole number, with no fractions or
decimals

–

Most commonly uses 32 bits (which is
also 4 bytes)

–

This gives us exactly 2 different
possible values

–

Exact ranges from -2147483648 to
2147483647

–

char

A char type is used to store a single
character

–

chars have to be wrapped in single
quotes, like: 'a'

–

Each char is associated with an integer–
We can convert chars to ints, and back–
'a' and 'A' are different characters!–
chars are just ints under the hood...–

Show ascii command in bash

double

A double-sized floating point number–
A decimal value - "floating point" means
the point can be anywhere in the number

–

Eg: 10.567 or 105.67 (the points are in
different places in the same digits)

–

It’s called "double" because it’s usually 64
bits, hence the double size of our integers
(or 8 bytes)

–

Variables syntax
To declare a variable, you use:

<type> <name>;

int age;–
char first_initial;–
double pi–

Demo

#include <stdio.h>

int main(void) {
 // declare an int.
 int my_age;

 // assign a value to the int.
 my_age = 25;

 // whoops, I wish... let's update
 my_age = 28;

 return 0;
}

OK we can store some data... so
what?

Printing variables using printf

We can print variables to our
terminal!

–

We describe the format of how we
want text printed, then the actual
values.

–

To print out a variable value, we use
format specifiers with printf

–

The format specifier (%) indicates
WHERE a value will output within
the format string.

int my_age = 13;
printf("I am %d years!",
my_age);

–

After the comma, you put the name of
the variable you want to write

The format specifier must match
the data types passed

%c for chars–
%d for ints “decimal integer”–
%lf for “long floating point
number” (a double)

–

printf needs to know what
type it should expect in what
order, because...

–

You can have multiple variables:
int diameter = 5;
double pi = 3.141;
printf("The diameter is %d, pi is
%lf", diameter, pi);

Demo

Break - lecture feedback

writing

!

 reading

scanf

Scan Formatted–
Reads input from the user in the same
format as printf

–

Format specifiers %d , %lf , %c are
used in the same way

–

The & symbol tells scanf where to store
the data (more details later in term)

–

#include <stdio.h>

int input;
printf("Please enter your age:
");
scanf("%d", &input);

Demo

A bit more on scanf

scanf("%d", &my_int);
scanf("%c", &my_char);

scanning an int ignores whitespace–
scanning a char does not ignore whitespace–
We can ignore leading whitespace with
chars:

–

scanf(" %c", &character);–

Constants

#define <NAME> <value>

#define PI 3.1415

A value that will never change–
More efficient to store a constant (less
memory)

–

Different syntax–
We use UPPERCASE to signify it's a
constant

–

Using variables in expressions
A lot of arithmetic operations will look very familiar
in C

adding +–
subtracting -–
multiplying *–
dividing /–
These will happen in their normal mathematical
order

–

We can also use brackets to force precedence–

int age = 28;
int current_year = 2023;
int year_born = current_year -
age;

printf("You were born in %d",
year_born);

chars are just ints playing
dress-up

char letter = 'b';
letter = letter + 1;
printf("%c\n", letter);

^^ Will print 'c'

Don't forget your limits

If we add two large ints together, we might go
over the maximum value, which will actually roll
around to the minimum value and possibly end
up negative

(Check out Ariane 5 explosion), a simple
error like this caused a rather large problem:
https://www.bbc.com/future/article/20150505-
the-numbers-that-lead-to-disaster)

–

Boeing 787 had to be rebooted every 248
days (2 -hundredths of a second)

–
31

https://www.engadget.com/2015-05-01-
boeing-787-dreamliner-software-bug.html

–

In a less destructive example, the video
Gangham Style on YouTube maxed out
the views counter :
https://www.bbc.com/news/world-asia-
30288542

–

Doubles :(

No such thing as infinite precision–
We can’t precisely encode a simple
number like ⅓

–

If we divide 1.0 by 3.0, we'll get an
approximation of ⅓

–

The effect of approximation can
compound the more you use them

–

Remember that C thinks in data types

If either numbers in the division are doubles,
the result will be a double

–

If both numbers are ints, the result will be an
int, for example, 3/2 will not return 1.5,
because ints are only whole numbers

–

ints will always drop whatever fraction exists,
they won’t round nicely, so 5/3 will result in 1

–

There's ways around all of this...–

