
COMP1511
Programming Fundamentals
Lecture 1
The Beginning



Today's Lecture

Important details about the lecture format–
Who to contact if you need help–
How COMP1511 works–
How to get help when you need it–
What is programming?–
Working in Linux–
A first look at C–



Who am I?

Really, who am I?

Software Engineer–
Tennis lover–
Coffee aficionado–
Favourite languages
(right now): Typescript,
Python, C!

–



Course admins!

Sofia: Multi-Award winning travel
documentarian

Daniel: 12kg of apples weekly
Tammy: "Happiest person of the year" 5 times

champ
Nicole: Australia's #1 ranked Pokemon Go

player



We have Lecture Moderators!





And we can't wait to meet you all <3
Let's take 5 mins to introduce yourself to

your neighbours (physical or virtual)



Important Resources



The Course page:
https://cgi.cse.unsw.edu.au/~cs1511/24T1/

All important course information is on this
page

–

We don't use Moodle!–
New Course Outline has moved!–



Contacts

Administration issues: cs1511@unsw.edu.au–
Enrolment issues:
https://nucleus.unsw.edu.au/en/contact-us

–

Equitable Learning Plan:
jake.renzella@unsw.edu.au

–



Getting help with Programming

The Forum

https://edstem.org/au/–
Post any content-related questions here!–



Details on Help Sessions, Revision
Classes, and more coming soon



Course Format

Weekly lectures–
Weekly tutelabs–
2x Major Assignments–
1x Final Exam–



Lecture Format

Monday: 11:00 - 13:00 in Ainsworth G03–
Wednesday: 11:00 - 13:00 in Ainsworth
G03

–

Youtube Live, or come alone to the
theatre

–



Tutorials/Labs

Tutelabs are scheduled as a single 3-hour
block

–

Go further into topics we cover in the
lecture

–

hands-on and practical!–



Jake's Major Assignment pro-tips

Start it as early as possible–
Don't plagiarise, we'll get ya–
Assignment 1 - 20% (Monday 8pm Week 7)–
Assignment 2 - 25% (Friday 8pm Week 10)–



What to do if you can't COMP1511

Feeling unwell? Need to travel back home for
an emergency? Dog ate your assignment?

special considerations:
https://student.unsw.edu.au/special-
consideration

–



Code of Conduct
We are here to learn



Plagiarism, Contract Cheating, ChatGPT,
My Neighbour worked on a C compiler



Quick break



COMP1511



Computers, compilers, programs, C,
operating systems, UNIX, Linux,

Terminal, Files, functions, oh my...



What is a computer?



What is Programming?
Producing a set of instructions and/or data

to achieve a task



Writing a program is like
writing a recipe

You provide the steps
required to solve the task

–

The computer executes the
program, completing it step
by step

–

Any mistakes in your recipe
will alter the final product
(and probably ruin it!)

–



How do these programs run?

Computers are made up of many programs,
many executing at the same time!

–

Imagine if your kitchen was used to prepare
tens, hundreds of recipes all at once

–





We need a head chef (operating system)!



An Operating System is the interface between the
user and the computer hardware
Operating Systems:

Execute user programs–
Make sure programs do what they're supposed to–
Schedules access to limited resources (hardware)–
Make the computer system convenient to use–



The Linux Operating
System

A UNIX-based operating
system

–

Open-Source, reliable,
lightweight and secure

–



How do programmers interact with a
computer?



The Terminal

Send text-based commands to our shell–

Terminal handles user input, rendering shell output–



The Shell

The shell, (bash, zsh) is a
program that executes
commands, and has its
own syntax. It returns
output which the terminal
can display



The Prompt

The prompt is controlled by the shell, and is
the line of text which displays some
information



How do I use this thing?



Important terminal commands

ls : Lists all the files in the current directory:–
mkdir <dir name> Makes a new directory called
directoryName:

–

cd <dir name> : Changes the current directory to
directoryName:

–

cd .. : Moves up one level of directories (one folder level):–
pwd : Tells you where you are in the directory structure at the
moment:

–



File operations

cp <source> <destination> : Copy a file from the source to
the destination

–

mv <source> <destination> : Move a file from the source to
the destination (can also be used to rename)

rm filename : Remove a file (delete)

The -r tag can be added to cp or rm commands to recursively go
through a directory and perform the command on all the files

cp -r <source> <desitnation>

–



But Jake! I don't have a Linux
computer!!!

Don't worry! We have one for you <3





Let's get set up together

Log into VLAB–
Open the Terminal–
Run 1511 setup–



Now we have the tools, so can we write
out first program yet?



00000000: 0100 0000 0000 0000 0000 0000 0000 
0000  
00000010: 1011 0110 0000 0000 0000 0000 0000 
0010
00000020: 0000 0100 0110 0000 1001 0000 0000 
0000 

Computers execute precise instructions
described in a native language to computers

–

This language is not easy for us to understand:–



Computers need precision!

So machine code is too precise...

Why can't we just say "Hey computer! Add
two numbers together!



Programming

Precise enough to be translated to machine
code

Simple enough that a human can
(sometimes) understand it.

A shared language



Programming in C
Why C?



And what a beautiful language
#include <stdio.h>

int main(void)
{
    printf("Hello world");
    return 0;
}



Demo (follow along if you can)

Create a .c file using the Terminal1.
Write our hello world program using
VSCode

2.

Save it3.



Let's break it down

// loads the standard input/output library
#include <stdio.h>

// the main function, the starting point of our program
int main(void) {
    // prints the string to the standard output
    printf("Hello world");
    
    // returns 0 to the operating system
    return 0;
}



#include <stdio>

Some tasks are so common, that it would be
wasteful to have to write them every time

–

Common code is available for us, in the
standard C library

–

We need to tell the compiler which libraries to
use

–



#include <stdio>

In this case, we want the Standard Input Output
Library

This allows us to make text appear on the terminal

Almost every C program you will write in this course
will have this line

–



The main block

int main(void) {
    ...
}

The main function–
Every C program must have 1 main function! It's where our
program starts!

–

Program runs in sequence, line-by-line starting inside the
main block

–



Blocks of code

{ 
    ...
}

Between each {  and }  are a block, or group of
instructions.

Blocks are very important! They are how we
organise code



The printf

{
    printf("Hello world!");
}

printf() makes text appear on the screen. It
is a function from stdio.h which we included.



return 0

return is a C keyword that tells the computer
that we are now delivering the output of a
function.

A main function that returns 0 is signifying a
correct outcome of the program back to the
operating system



Comments!

//  in front of a line makes it a comment`

If we use /*  and */  everything between them will be
comments
The compiler will ignore comments, so they can be
anything you want really!

We place “comments” in programs explain to our future
selves or our colleagues what we intended for this code

–



Compiling

Remember, C is a shared language, so we
can be productive

Computers can't understand C

We need to turn our C code into machine
code using a compiler



Compilers are programs

That turn code into machine code.

dcc program.c -o helloWorld
./helloWorld

This compiles a C program into an
executable called helloWorld, and runs it





Modern technology has changed a lot
But what hasn't changed



Is computers executing instructions
described by humans



What will you build?


