COMPISIIl Programming
Fundamentals

LINKED LIST LECTURE

PROGRAM!!
(TO WRAP THINGS

WEEK 9 LECTURE I

A

UPp)




ASSIGNMENT |
MARKS
RELEASE EARLY TO
MID THIS WEEK :)

(ANY ISSUES PLEASE
EMAIL CSI5I1)

MYEXPERIENCE

SURVEY
KEEP AN EYE ON YOUR
UNSW EMAIL FOR IT

WE wWOULD LOVE YOUR
FEEDBACK @@



FINAL EXAM INFO

SASHA WILL GO
THROUGH ON
WEDNESDAY :)

WEEK 10
PRACTICE EXAM

WILL BE HELD IN LABS

IF YOU ARE ENROLLED IN
ONLINE TUT-LAB, YOU WILL
BE ABLE TO SIGN UP TO AN

IN-PERSON LAB
VIA LINK* ON FORUM

*Coming soon!

WEEK (1

REVISION SESSIONS
(LAST SET OF REVISION
SESSIONS)

LOOK OUT FOR SIGN
UPS FOR THOSE ON THE
FORUM THIS/NEXT
WEEK



https://cgi.cse.unsw.edu.au/~csl511/24T1/live/week 9/

[=]

%‘g N
GlEE



https://cgi.cse.unsw.edu.au/~cs1511/23T3/live/week_7/

e Linked Lists
o insert at head
o traverse (and print) a linked list
o insert at tail
o insert anywhere
o deletion of specific nodes
= at head
= at tail
" in between two nodes



* Today:

o Wrapping up linked list

o Linked list lecture Program
e Wednesday:

o Exam Information



For any linked list operations you try and code up:

Are you drawing diagrams as you code -
Draw, Code, Repeat! (It's so much easier to debug this way!)

Have you considered all the possible cases we can
operate in? Here are some we mentioned that might
apply:
e How many nodes do we have in the [ist?
o Empty list?
= then there’s nothing to delete!
o Only one node in the list?
o More than one /many nodes in the list?

e Which node/where in the list do we want to operate
on:
o at the head?
o between two nhodes?
o at the tail?



When do we use malloc(...)?
e when we have “new” data to be inserted into a list
o working with existing data doesn’t count e.g.
printing the list, we don't need malloc(...)

When do we use free(...)?
e when we are trying to “remove” any node(s)
e whenever we use malloc(...) in our programs, there
should be a corresponding free(...) for each piece of
memory malloc-ed



WE SPOKE ABOUT MEMORY LEAKS
BUT...

HOW DO I GO ABOUT CHECKING FOR MEMORY LEAKS IN MY
CODE?
(OTHER THAN MANUALLY LOOKING AT IT)



~% dcc program.c -o program|--leak-check



UH OH! - BUG IN OUR
"INSERT AT POSITION FUNCTION
PREVIOUSLY CODED?!

WHAT HAPPENS WHEN YOU TRY AND
INSERT A NODE
AT POSITION LENGTH + (7

E.G. INSERTING A NODE AT POSITION 6 IN A LINKED LIST OF 5 NODES
(WHICH 1S INVALID)

Let’s look back at our linked_list.c code from last week...



FEI

(FREQUENTLY
ENCOUNTERED ' Uninitialised pointer

o
ISSUES)

' Accessing NULL pointer variable
®

' Memory leak
®



Accessing NULL pointer variable

-~ explanation: You are using a poilnter which 1s NULL

A common error 1s using p->field when p == NULL.
Execution stopped in insert at position(data=0, position=6, head=-0x602000000070) in linked_list.c at line 126:

current = current->next;
;

1
[/ current == NULL --- reached the end of the list
f// OR ---- BUGGGG MISSED -- IT's not OR but AND/OR
// counter == position --- we have reached the position we want to insert

if (counter == position) { // && current 1z NULL
current->next = new_node; ’=

return head;

counter = 6
current = NULL %
position = 6

new node->next = NULL

(Screenshot of example output you might get from dcc)



struct node *some ptr;

Uninitialised pointer struct node *head = create node(7, some ptr);

75163340@nw-k17-loginl:~/public_html/24T1 1511/test$ dcc linked list.c -o linked list
linked list.c:32:37: warning: variable 'some_ptr' is uninitialized when used here [-Wuninitialized] ?

struct node *head = create node(7, some ptr);

o P s P Mo P oy it

linked_list.c:31:23: initialize the variable 'some ptr' to silence this warning
struct node *some ptr;

= NULL
dcc explanation: you are using variable 'some_ptr' before it has been assigned a value.
Be sure to assign a value to 'some_ptr' before trying to use its value.

Don't understand? Get AI-generated help by running: dcc-help
® 75163340@nw-k17-1loginl:~/public_html/24T1 1511/test$ ./linked list

[

Execution stopped in print list(head=0x602000000070) in linked_list.c at line 72:
void print_list(struct node *head) {

struct node *current = head;

while (current != NULL) { // while we have not reached the end of the list

current = current->next;
h
printf("\n");
cecution stopped:

current = @x1

nction call traceback:

print [1st(head=0x602000000070) called at line 37 of linked_list.c
main()

(Screenshot of example output you might get from dcc)




Memory Leak

k& code$ dcc linked list.c -o linked list --leak-check
wk8& code$ ./linked list

memory allocated with malloc in function create node in linked list.c at line 55.



(Starter code is in the live lecture code url!)

e Working with a larger prorgam

e Putting linked list in a context

e Understanding provided code in multiple files
e More variations of linked list operations



e Context: Email Management System
o managing emails using linked list
e Files/code provided (3 files):
o ~emall_management_system.c (TODO)
o ~emall_management_system.h (PROVIDED)
o main.c (PROVIDED)
e Task:
o Complete all TODO function definitions in
“email_management_system.c
e Assumption: all emails ever created in a program have unique
subjects (to simplify for demo)




LET S FIRST UNDERSTAND WHAT
THE PROVIDED CODE IS DOING +
HOW THEY CONNECT TOGETHER




A VISUAL REPRESENTATION OF WHAT THE LINKED LIST
FOR THIS PROGRAM CAN LOOK LIKE...



struct folder

num_emails

folder




folder

struct email

subject

type

struct folder

priority

struct email

num_emails
emails

struct email

subject

type
priority

next

R

NULL



CODING TIME!

Email Management System







MORE CODING TIME!

Email Management System




e Wrapped up linked list :)
e Lecture Program on linked list



is back :D EXP\P’\V-

Exam Info time!



Thank you for taking time to give me feedback!

-'ll'-
J"-'l. EI

https.//forms.office.com/r/Cn8FgdFPhu



If you have any questions:

COURSE RELATED

COURSE FORUM + HELP
SESSIONS!

ADMIN RELATED
CSIS5II@UNSW.EDVU.AV




