
with Tammy
(Sasha is back for next lecture :))

COMP1511 Programming
Fundamentals

L I N K E D L I S T L E C T U R E
P R O G R A M !

(T O W R A P T H I N G S U P)

WEEK 9 LECTURE 1

MYEXPERIENCE
SURVEY

KEEP AN EYE ON YOUR
UNSW EMAIL FOR IT

WE WOULD LOVE YOUR
FEEDBACK

Announcements

ASSIGNMENT 1
MARKS

RELEASE EARLY TO
MID THIS WEEK :)

(ANY ISSUES PLEASE
EMAIL CS1511)

Announcements

WEEK 10
PRACTICE EXAM
WILL BE HELD IN LABS

IF YOU ARE ENROLLED IN

ONLINE TUT-LAB, YOU WILL
BE ABLE TO SIGN UP TO AN

IN-PERSON LAB
VIA LINK* ON FORUM

FINAL EXAM INFO
SASHA WILL GO
THROUGH ON
WEDNESDAY :)

*Coming soon!

WEEK 11
REVISION SESSIONS

(LAST SET OF REVISION
SESSIONS)

LOOK OUT FOR SIGN
UPS FOR THOSE ON THE

FORUM THIS/NEXT
WEEK

LIVE CODE HERE:

https://cgi.cse.unsw.edu.au/~cs1511/24T1/live/week_9/

https://cgi.cse.unsw.edu.au/~cs1511/23T3/live/week_7/

LAST FEW LECTURES:
Linked Lists

insert at head
traverse (and print) a linked list
insert at tail
insert anywhere
deletion of specific nodes

at head
at tail
in between two nodes

THIS WEEK:

Today:
Wrapping up linked list
Linked list lecture Program

Wednesday:
Exam Information

LINKED LIST
CODE
WRITING
CHECKLIST :)

Are you drawing diagrams as you code -
Draw, Code, Repeat! (It’s so much easier to debug this way!)

Have you considered all the possible cases we can
operate in? Here are some we mentioned that might
apply:

How many nodes do we have in the list?
Empty list?

then there’s nothing to delete!
Only one node in the list?
More than one / many nodes in the list?

Which node/where in the list do we want to operate
on:

at the head?
between two nodes?
at the tail?

For any linked list operations you try and code up:

FAQ :)

When do we use malloc(...)?
when we have “new” data to be inserted into a list

working with existing data doesn’t count e.g.
printing the list, we don’t need malloc(...)

When do we use free(...)?
when we are trying to “remove” any node(s)
whenever we use malloc(...) in our programs, there
should be a corresponding free(...) for each piece of
memory malloc-ed

HOW DO I GO ABOUT CHECKING FOR MEMORY LEAKS IN MY

CODE?

(OTHER THAN MANUALLY LOOKING AT IT)

WE SPOKE ABOUT MEMORY LEAKS
BUT...

HOW DO I GO ABOUT CHECKING FOR MEMORY LEAKS IN MY

CODE?

(OTHER THAN MANUALLY LOOKING AT IT)

WE SPOKE ABOUT MEMORY LEAKS
BUT...

WHAT HAPPENS WHEN YOU TRY AND

INSERT A NODE

AT POSITION LENGTH + 1?

E.G. INSERTING A NODE AT POSITION 6 IN A LINKED LIST OF 5 NODES

(WHICH IS INVALID)

UH OH! - BUG IN OUR
`INSERT_AT_POSITION` FUNCTION

PREVIOUSLY CODED?!

Let’s look back at our linked_list.c code from last week...

FEI
(FREQUENTLY
ENCOUNTERED
ISSUES)

Accessing NULL pointer variable

Uninitialised pointer

Memory leak

FEI
(FREQUENTLY
ENCOUNTERED
ISSUES)

Accessing NULL pointer variable

(Screenshot of example output you might get from dcc)

FEI
(FREQUENTLY
ENCOUNTERED
ISSUES)

Uninitialised pointer

(Screenshot of example output you might get from dcc)

FEI
(FREQUENTLY
ENCOUNTERED
ISSUES)

Memory Leak

A BIGGER LINKED LIST PROGRAM
(BIGGER THAN WHAT WE HAVE DONE SO FAR,

SMALLER THAN ASSN 2)

Working with a larger prorgam
Putting linked list in a context
Understanding provided code in multiple files
More variations of linked list operations

(Starter code is in the live lecture code url!)

Context: Email Management System
managing emails using linked list

Files/code provided (3 files):
`email_management_system.c` (TODO)
`email_management_system.h` (PROVIDED)
`main.c` (PROVIDED)

Task:
Complete all `TODO` function definitions in
`email_management_system.c`

Assumption: all emails ever created in a program have unique
subjects (to simplify for demo)

LECTURE LINKED LIST PROGRAM

LET’S FIRST UNDERSTAND WHAT
THE PROVIDED CODE IS DOING +
HOW THEY CONNECT TOGETHER

A VISUAL REPRESENTATION OF WHAT THE LINKED LIST
FOR THIS PROGRAM CAN LOOK LIKE...

folder

A VISUAL REPRESENTATION OF WHAT THE LINKED LIST
FOR THIS PROGRAM CAN LOOK LIKE...

name

num_emails

emails

struct folder

folder

NULL

A VISUAL REPRESENTATION OF WHAT THE LINKED LIST
FOR THIS PROGRAM CAN LOOK LIKE...

name

num_emails

emails

struct folder

sender

subject

size

struct email

type

priority

next

sender

subject

size

struct email

type

priority

next

sender

subject

size

struct email

type

priority

next

CODING TIME!
Email Management System

BREAK TIME!

MORE CODING TIME!
Email Management System

SUMMARY OF TODAY

Wrapped up linked list :)
Lecture Program on linked list

NEXT LECTURE

Sasha is back :D
Exam Info time!

FEEDBACK
(PRETTY PLEASE
WITH A CHERRY

ON TOP)

https://forms.office.com/r/Cn8FgdFPhu

Thank you for taking time to give me feedback!

If you have any questions:

COURSE FORUM + HELP
SESSIONS!

ADMIN RELATED

CS1511@UNSW.EDU.AU

COURSE RELATED

Come say hi if you see me around on campus :D

