
with Tammy
(for Wk7 Mon - Wk9 Mon)

(Sasha is at a conference across the globe)

COMP1511 Programming
Fundamentals

M O R E L I N K E D L I S T S !
(C O D I N G + D R A W I N G T I M E)

WEEK 7 LECTURE 2

ASSIGNMENT 2
LIVESTREAM
NEXT TUESDAY

1:00PM
113 SEMINAR RM K17

+ YOUTUBE

Announcements

ASSIGNMENT 2
RELEASING TOMORROW

ALL ABOUT LINKED
LISTS

START EARLY!
DUE END OF WEEK 10

We will try and get assignment 1 marks and style feedback released before

assignment 2's deadline so you can learn from it to apply to your assignment 2

Announcements

EASTER CATCH UP
CLASSES

IF YOUR TUT-LAB FALLS
ON GOOD FRIDAY OR

EASTER MONDAY

SIGN UP VIA LINK ON
FORUM!

WEEK 8 REVISION
SESSIONS

SIGN UP LINK ON
COURSE FORUM!

LIVE CODE HERE:

https://cgi.cse.unsw.edu.au/~cs1511/24T1/live/week_7/

https://cgi.cse.unsw.edu.au/~cs1511/23T3/live/week_7/

THIS WEEK:
INTO THE WORLD OF LINKED LISTS

Last Lecture:
Pointers & Memory Recap
Linked Lists

conceptual introduction
insert at head (we got up to here)
traverse a linked list
insert at tail

THIS WEEK:
INTO THE WORLD OF LINKED LISTS

Today - pick up from where we left off:
More linked lists!

insert at head (continue from last
lecture)
traverse a linked list
insert at tail
insert anywhere
intro to deleting nodes (maybe)

Quick Recap:
What does a linked list look like again?

data

where to find the
next node

A variable storing the address of the next node
(i.e. a pointer) - so there's a way to connect
nodes together
e.g. 0x66

An integer variable - to store the number
e.g. 7

A “node” in a linked list:

LINKED LIST

Example:

Note: You can have more than `int data` for each element/”node”!

int data

struct node *next

int data

struct node *next

int data

struct node *next

struct node struct node struct node

head NULL

LINKED LISTS!

An Empty Linked List looks like:

head NULL

From now on, if a linked list looks like this:

int data = 7

struct node *next

int data = 8

struct node *next

int data = 11

struct node *next

head NULL

I will draw them like this (to make it easier to draw):

7811

head X

Our unfinished task from last lecture...

create a linked list to store the numbers 11, 8 , 7
as elements

LET'S PUT THIS LINKED
LIST TOGETHER IN CODE
(W/ ACTUAL DRAWINGS)!

11->8->7->X
We will need to know how to use struct pointers and malloc!

Define a struct
for our node

Declare a pointer
to keep track of
the beginning of

list

Code to create a
node and connect
it to a linked

list

1 2 3

Steps to do this!
4

CODING TIME!
11->8->7->X

DIAG
RAM

S! DIAGRAMS!

WHAT DID
WE JUST
CODE UP?

Created a linked list by inserting
nodes at the head
We are inserting backwards;
last element inserted first

HOW DO WE INSERT
"FORWARD"?

need to insert at tail
need to know how to traverse the
linked list to get to the end to do so

CODING TIME! (AGAIN)
Traverse the linked list and print the data!

DIAG
RAM

S! DIAGRAMS!

TRAVERSING A LINKED LIST

7811head
X

TRAVERSING A LINKED LIST

7811head
X

current

struct node *current = head;

TRAVERSING A LINKED LIST

7811head
X

current

struct node *current = head;
current = current->next;

TRAVERSING A LINKED LIST

7811head
X

current

struct node *current = head;
current = current->next;
current = current->next;

TRAVERSING A LINKED LIST

7811head
X

current

struct node *current = head;
current = current->next;
current = current->next;
current = current->next;

TRAVERSING A LINKED LIST

7811head
X

current

struct node *current = head;
current = current->next;
current = current->next;
current = current->next;

Repetition of code
means

it’s time to use
a loop!

TRAVERSING A LINKED LIST

7811head
X

current

struct node *current = head;
while (current != NULL) {
 // ...
 current = current->next;
}

Repetition of code
means

it’s time to use
a loop!

HOW DO WE INSERT A NEW
NODE WITH THE VALUE OF 6
AT THE TAIL OF THIS LIST?

11->8->7->X

Malloc memory
for a new node
and initialise it

Traverse to the
last node in the

given list

Add the new
node after this

current last node
of the list

1 2 3

Steps to do this!
4

INSERT AT TAIL

7811head
X

7811head
X

current

struct node *current = head;
INSERT AT TAIL

7811head
X

current

struct node *current = head;
current = current->next;

INSERT AT TAIL

7811head
X

current

struct node *current = head;
current = current->next;
current = current->next;

INSERT AT TAIL

7811head
X

current

struct node *current = head;
current = current->next;
current = current->next;

Again, repetition
means a loop!

INSERT AT TAIL

7811head
X

current

struct node *current = head;
while (current->next != NULL) {
 current = current->next;
}

Again, repetition
means a loop!

INSERT AT TAIL

7811head

current

struct node *current = head;
while (current->next != NULL) {
 current = current->next;
}

Let’s assume we have a
new_node somewhere

for now
(this will need to be

malloc-ed beforehand)

INSERT AT TAIL

6new_node

X

X

7811head

current

struct node *current = head;
while (current->next != NULL) {
 current = current->next;
}

current->next = new_node

Note: this is incomplete
pseudocode

INSERT AT TAIL

6new_node
X

7811head

current

struct node *current = head;
while (current->next != NULL) {
 current = current->next;
}

current->next = new_node

Note: this is incomplete
pseudocode

INSERT AT TAIL

6 X

new_node

CODING TIME! (AGAIN)
Insert at Tail

DIAG
RAM

S! DIAGRAMS!

WAIT, ARE WE DONE WITH
INSERTION AT TAIL?

That is,
Will our code work fine for different
“edge cases”?

e.g. inserting at tail in an empty
list...

BREAK TIME!

GIVEN A LIST, AN INTEGER
VALUE AND A POSITION

NUMBER, HOW DO WE INSERT A
NEW NODE WITH THE INTEGER
VALUE AFTER THE SPECIFIED

POSITION?

For example, given:
the list,

11->8->7->6->X
an integer value of

5
a position number of

2
The list will become:

11->8->5->7->6->X

if position number == 0, insert as the first element of the list
if position number > the number of elements in the list or < 0, do
nothing)

INSERT ANYWEHRE (AT SPECIFIED POSITION)

HOW DO WE INSERT ANYWHERE*
(NOT JUST HEAD OR TAIL)?

We need to consider some “cases”:
Where in the list can we insert into:

at the head? (as the first node)
between two existing nodes in the list?
at the tail? (as the last node)

How many nodes do we have in the list?
Empty list?
Only one node in the list?
More than one / many nodes in the list?

...

*how do we write a function that would just insert an element wherever we specify

Malloc memory
for a new node
and initialise it

Find the node right
before the position

to insert into

Change where
pointers are pointing
to to add the new
node into the list

accordingly

1 2 3

General steps to do this!
4

Don’t forget to also consider different edge cases

CODING TIME! (AGAIN)
Insert at position (anywhere)

DIAG
RAM

S! DIAGRAMS!

INSERT ANYWEHRE
EXAMPLE CASE #1: INSERT NEW NODE

AT THE HEAD
(I.E. WHEN POSITION NUMBER == 0)

OF AN EMPTY LIST

head

5

X

*for the purpose of having an example,
we will explore inserting exactly in the middle of the above list

Xnew_node

INSERT ANYWEHRE
EXAMPLE CASE #1: INSERT NEW NODE

AT THE HEAD
(I.E. WHEN POSITION NUMBER == 0)

OF AN EMPTY LIST

head

5

X

*for the purpose of having an example,
we will explore inserting exactly in the middle of the above list

Xnew_node

INSERT ANYWEHRE
EXAMPLE CASE #2: INSERT NEW NODE

AT THE HEAD
(I.E. WHEN POSITION NUMBER == 0)

OF A NON-EMPTY LIST

7811head 6 X

*for the purpose of having an example,
we will explore inserting exactly in the middle of the above list

5 Xnew_node

INSERT ANYWEHRE
EXAMPLE CASE #2: INSERT NEW NODE

AT THE HEAD
(I.E. WHEN POSITION NUMBER == 0)

OF A NON-EMPTY LIST

7811head 6 X

*for the purpose of having an example,
we will explore inserting exactly in the middle of the above list

5 Xnew_node

INSERT ANYWEHRE
EXAMPLE CASE #3 (THE AVERAGE CASE):

INSERT NEW NODE
IN BETWEEN TWO NODES*

IN A LIST WITH MULTIPLE NODES

7811head 6 X

*for the purpose of having an example,
we will explore inserting exactly in the middle of the above list

5 Xnew_node

INSERT ANYWEHRE
EXAMPLE CASE #3: INSERT NEW NODE

IN BETWEEN TWO NODES*
IN A LIST WITH MULTIPLE NODES

7811head 6 X

*for the purpose of having an example,
we will explore inserting exactly in the middle of the above list

5 Xnew_node

INSERT ANYWEHRE
EXAMPLE CASE #4: INSERT NEW NODE

AT THE TAIL OF
A NON-EMPTY LIST

7811head 6 X

5 Xnew_node

INSERT ANYWEHRE
EXAMPLE CASE #4: INSERT NEW NODE

AT THE TAIL OF
A NON-EMPTY LIST

7811head 6 X

5 Xnew_node

INSERT ANYWEHRE
EXAMPLE CASE #5: INVALID POSITION NUMBER

(LESS THAN 0 OR GREATER THAN LENGTH)

Do nothing

NOW WE KNOW HOW TO INSERT...
HOW DO WE DELETE NODES?

GIVEN A LIST AND AN INTEGER
VALUE, HOW DO WE DELETE THE

VALUE FROM THE LIST IF IT
EXISTS?

(ASSUMING VALUES IN THE LIST
ARE UNIQUE)

For example, given:
the list,

11->8->7->6->X
an integer value of

7
The list will become:

11->8->6->X

DELETE A SPECIFIC NODE

HOW DO WE REMOVE/DELETE A NODE?

Depends... like before, we need to consider some “cases”:
How many nodes do we have in the list?

Empty list?
then there’s nothing to delete!

Only one node in the list?
More than one / many nodes in the list?

Which node in the list is to be deleted:
a node at the head? (i.e. first node)
a node between two other nodes?
a node at the tail? (i.e. last node)

...

Find the
previous node to
the one that is
being deleted

Change the next
pointer of this
previous node to
skip the node to

be deleted

Free the memory
for the node we
are deleting

1 3 4

General steps to do this!

Don’t forget to also consider different edge cases

Make another
pointer keep
track of the

node to delete
(for step 4)

2

CODING TIME! (AGAIN)
Delete node

DIAG
RAM

S! DIAGRAMS!

DELETE NODE
EXAMPLE CASE #1: DELETE SOME NODE

IN AN EMPTY LIST

head X

DELETE NODE
EXAMPLE CASE #2: DELETE THE NODE

IN A LIST
WITH ONLY ONE ELEMENT

head 6 X

DELETE NODE
EXAMPLE CASE #2: DELETE THE NODE

IN A LIST
WITH ONLY ONE ELEMENT

head 6 X

DELETE NODE
EXAMPLE CASE #3:

DELETE NODE
AT THE HEAD

IN A LIST WITH MULTIPLE NODES

7811head 6 X

DELETE NODE
EXAMPLE CASE #3:

DELETE NODE
AT THE HEAD

IN A LIST WITH MULTIPLE NODES

7811head 6 X

DELETE NODE
EXAMPLE CASE #4 (AVERAGE CASE):

DELETE SOME NODE
IN BETWEEN TWO NODES

IN A LIST WITH MULTIPLE NODES

7811head 6 X

DELETE NODE
EXAMPLE CASE #4 (AVERAGE CASE):

DELETE SOME NODE
IN BETWEEN TWO NODES

IN A LIST WITH MULTIPLE NODES

7811head 6 X

DELETE NODE
EXAMPLE CASE #5:

DELETE NODE
AT THE TAIL

IN A LIST WITH MULTIPLE NODES

7811head 6 X

DELETE NODE
EXAMPLE CASE #5:

DELETE NODE
AT THE TAIL

IN A LIST WITH MULTIPLE NODES

7811head 6 X

LINKED LIST
CODE
WRITING
CHECKLIST :)

Are you drawing diagrams as you code -
Draw, Code, Repeat! (It’s so much easier to debug this way!)

Have you considered all the possible cases we can
operate in? Here are some we mentioned that might
apply:

How many nodes do we have in the list?
Empty list?

then there’s nothing to delete!
Only one node in the list?
More than one / many nodes in the list?

Which node/where in the list do we want to operate
on:

at the head?
between two nodes?
at the tail?

For any linked list operations you try and code up:

FAQ :)

When do we use malloc(...)?
when we have “new” data to be inserted into a list

working with existing data doesn’t count e.g.
printing the list, we don’t need malloc(...)

When do we use free(...)?
when we are trying to “remove” any node
whenever we use malloc(...) in our programs, there
should be a corresponding free(...) for each piece of
memory malloc-ed

FEEDBACK
(PRETTY PLEASE
WITH A CHERRY

ON TOP)
https://forms.office.com/r/Cn8FgdFPhu

Enjoy your Easter long

weekend!

(No lecture next Monday)

Thank you for taking time to give me feedback

LINKED LIST BUZZWORDS: NODE, NULL, HEAD, TAIL

SUMMARY OF TODAY

More linked lists!
insert at head (continued from
last lecture)
traverse a linked list
insert at tail
insert anywhere
intro to deleting nodes (maybe)

NEXT LECTURE
(I.E. NEXT WEDNESDAY)

Even more linked list
operations!
(with a focus on deletion of nodes in the list)

If you have any questions:

COURSE FORUM + HELP
SESSIONS!

ADMIN RELATED

CS1511@UNSW.EDU.AU

COURSE RELATED

And come say hi if you see me around on campus :D

