
with Tammy
(for Wk7 Mon - Wk9 Mon)

(Sasha is at a conference across the globe)

COMP1511 Programming
Fundamentals

P O I N T E R S & M E M O R Y R E C A P
+

I N T R O T O “ L I N K E D L I S T ”

WEEK 7 LECTURE 1

ASSIGNMENT 2
LIVESTREAM
NEXT TUESDAY

1:00PM
113 SEMINAR RM K17

+ YOUTUBE

Announcements

ASSIGNMENT 1
DUE TODAY!
MONDAY 8PM

HELP SESSIONS ARE
RUNNING!

ASSIGNMENT 2
RELEASING THIS

THURSDAY
ALL ABOUT LINKED

LISTS
(ONLY 2-DAY BREAK SORRY)

Announcements

EASTER CATCH UP
CLASSES

IF YOUR TUT-LAB FALLS
ON GOOD FRIDAY OR

EASTER MONDAY

SIGN UP VIA LINK ON
FORUM!

WEEK 8 REVISION
SESSIONS

COMING SOON!
-

KEEP AN EYE ON THE
COURSE FORUM FOR

SIGN UPS

LIVE CODE HERE:

https://cgi.cse.unsw.edu.au/~cs1511/24T1/live/week_7/

https://cgi.cse.unsw.edu.au/~cs1511/23T3/live/week_7/

TWO WEEKS AGO...

POINTERS & DYNAMIC
MEMORY ALLOCATION

THIS WEEK:
INTO THE WORLD OF LINKED LISTS

Today:
Recap (some of) Pointers & Memory
Intro to Linked Lists

insert at head
traverse a linked list
insert at tail (maybe)

Pointers & Memory Recap

a type of variable storing a
memory address
can point to any type of
data (int, char, struct ...
etc.)
can access the data

(“dereference” using *)

can retrieve the address of
the variable the pointer
points to

(“address of ...”using &)

Pointers
Recap

Memory Stack

0xFF4C

0xFF48

0xFF44

0xFF40

Pointers
Recap

“DECLARE”
A POINTER Memory Stack

number_ptr
= ?

0xFF4C

0xFF48

0xFF44

0xFF40

Pointers
Recap

“DECLARE”
A POINTER Memory Stack

number_ptr
= 0xFF40

number = 8

0xFF4C

0xFF48

0xFF44

0xFF40

“ASSIGN A
VALUE”TO
A POINTER

“address of ...”

Pointers
Recap

“DECLARE”
A POINTER Memory Stack

number_ptr
= 0xFF40

number = 8

0xFF4C

0xFF48

0xFF44

0xFF40

“address of ...”

“DEREFERENCE”
A POINTER

“the value in the variable the
pointer is pointing to”

“ASSIGN A
VALUE”TO
A POINTER

Pointers
Recap

“DECLARE”
A POINTER

“address of ...”

“DEREFERENCE”
A POINTER

“the value in the variable the
pointer is pointing to”

THEY ARE
DIFFERENT!!!

“ASSIGN A
VALUE”TO
A POINTER

Pointers
Recap

“DECLARE”
A POINTER

“address of ...”

“DEREFERENCE”
A POINTER

“the value in the variable the
pointer is pointing to”

This is a
variable type

“ASSIGN A
VALUE”TO
A POINTER

Pointers
Recap

We can have different types of pointers...

INTEGER POINTER

number_ptr 8
(an integer)

Pointers
Recap

We can have different types of pointers...

INTEGER POINTER

number_ptr 8
(an integer)

CHARACTER POINTER

char_ptr ‘a’
(a character)

Pointers
Recap

We can have different types of pointers...

INTEGER POINTER

number_ptr 8
(an integer)

CHARACTER POINTER

char_ptr ‘a’
(a character)

DOUBLE POINTER

double_ptr 2.5
(a double)

STRUCT POINTER

struct_student_ptr

first_name_initial = ‘T’
last_name initial = ‘Z’

zID = 1111
exam_mark = 75

(a “struct student”)

Pointers
Recap

We can have different types of pointers...

Any questions about
pointers?

Mini Quiz: Will the following work in code?

Mini Quiz: Will the following work in code?

NO - THEY ARE DIFFERENT TYPES

Mini Quiz: Will the following work in code?

NO - THEY ARE DIFFERENT TYPES

NO - LHS IS AN INT, RHS IS A POINTER
(ADDRESS)

Mini Quiz: Will the following work in code?

NO - THEY ARE DIFFERENT TYPES

NO - LHS IS AN INT, RHS IS A POINTER
(ADDRESS)

YES!

Mini Quiz: Will the following work in code?

NO - THEY ARE DIFFERENT TYPES

NO - LHS IS AN INT, RHS IS A POINTER
(ADDRESS)

YES!

DEPENDS - IS NUMBER_PTR INITIALISED?

Memory
Recap

Our “block of memory” looks like:

High Address

Low Address

stack

heap

data

code Machine Code for Programs

Global variables/static
variables/constants

malloc’d objects
(will be discussed)

Local variables, parameters
etc.(will be discussed)

Memory
Recap

Our “block of memory” looks like:

High Address

Low Address

stack

heap

data

code Machine Code for Programs

Global variables/static
variables/constants

malloc’d objects
(will be discussed)

Local variables, parameters
etc.(will be discussed)

Where information about your program
goes:

which functions are called + in
what order,
what variables you created +
where

When a block of code is executed { },
a stack frame is created on the stack
(roughly enough memory to store
everything in the frame is allocated to
the frame)
When a block of code is completed, the
stack frame is removed from the stack

anything inside stack frame is
destroyed

block of code example: functions

Stack

Where information about your program
goes:

which functions are called + in
what order,
what variables you created +
where

When a block of code is executed { },
a stack frame is created on the stack
(roughly enough memory to store
everything in the frame is allocated to
the frame)
When a block of code is completed, the
stack frame is removed from the stack

anything inside stack frame is
destroyed

block of code example: functions

Stack

vs.

Heap
Where information about your program
goes:

which functions are called + in
what order,
what variables you created +
where

When a block of code is executed { },
a stack frame is created on the stack
(roughly enough memory to store
everything in the frame is allocated to
the frame)
When a block of code is completed, the
stack frame is removed from the stack

anything inside stack frame is
destroyed

block of code example: functions

Stack

vs.

Memory allocated by the
programmer to store data resides
here

won't be deallocated until it is
explicitly freed by the
programmer

Nothing is automatically declared
or destroyed in the Heap
can dynamically ask for/return
memory as we need

using malloc(...) and free(...)

How we can use the heap:
malloc() – “Memory Allocation”

take a value representing the size we want in
bytes
allocates memory on the heap
returns a pointer to the location on the heap

allows us to dynamically create memory as we
need it now!

stack

heap

data

code

The Heap - malloc()

We can’t keep asking for more memory without
giving some back!
GIVE BACK ANY UNUSED ALLOCATED SPACE BY
USING FREE()

Otherwise, we can have:

Memory Leaks
occurs when you have dynamically allocated
memory (with malloc), do not free it and, memory
is lost and cannot be freed

stack

heap

data

code

The Heap - free()

sizeof()
takes in a data type
tells us the exact number of bytes we need to
malloc

Let me show you the magic of sizeof() with a
mini code demo

sizeof()

Memory
Recap

Putting it altogether malloc(sizeof(...)
free()

This will give us 10 x 4 bytes (i.e. 40bytes) which is
pointed to by ptr

Memory
Recap

(generally sizeof(int) is 4)

‘x’ is useful when you want more than one element!Memory
Recap

Putting it altogether malloc(sizeof(...)
free()

struct_student_ptr

first_name_initial = ...
last_name initial = ...

zID = ...
exam_mark = ...

(a malloc-ed “struct student”)

Putting it altogether
(with struct pointers)

malloc(sizeof(...)
free()

Memory
Recap

Any questions?

End of Recap!

So far, we store a collection of
data/values using:

ARRAYS

STATIC ARRAYS

We can either assume a huge size and waste space, or
not do that and run out of space...

DYNAMIC ARRAY

We have a
problem...

WHEN WORKING WITH ARRAYS...

I could use a dynamic array and realloc to increase the
memory used when needed, but that can be costly
(e.g. when you already have a large memory block)

 I don't know how much space I need to store this list of things...

WHAT IF...
....there is a way to store a collection of data and request for
more memory on demand easily for additional elements?

LINKED LISTS!

BREAK TIME!
(KAHOOT)

LINKED LISTS!What are ?
Similar to arrays:

another way to store a collection of the same data type
Different to arrays:

dynamically sized (very efficient!) - ask for and give back
memory as necessary
elements - no need to be stored contiguously in memory
can only access items starting from the beginning of the list

LINKED LISTS!

Some Data
(e.g. an integer)

What are ?

Node
(i.e. an element of a linked list)

Visually (very vaguely), it looks like this:

LINKED LISTS!

Some Data Some Data Some Data Some Data

What are ?
Visually (very vaguely), it looks like this:

Node Node Node Node

How does a Linked List link up like that??

How does a Linked List link up like that??

Let's do a high-level walkthrough:
create a linked list to store the numbers 11, 8 , 7

as elements

Firstly, we need each of our nodes to look similar to this and store the following
data:

data

where to find the
next node

A variable storing the address of the next node
(i.e. a pointer) - so there's a way to connect
nodes together
e.g. 0x66

An integer variable - to store the number
e.g. 7

How does a Linked List link up like that??

Walkthrough: create a linked list to store the numbers 11, 8 , 7

Allocated

In the Computer Memory...

Note: This is not what it actually looks like in memory , diagram simplified for understanding

Allocated

Walkthrough: create a linked list to store the numbers 11, 8 , 7

Walkthrough
Steps:

Allocated

In the Computer Memory...

Note: This is not what it actually looks like in memory , diagram simplified for understanding

Allocated

Walkthrough: create a linked list to store the numbers 11, 8 , 7

Walkthrough
Steps:

 Malloc and
store 7

1.data: 7

next: ?

Allocated

In the Computer Memory...

Note: This is not what it actually looks like in memory , diagram simplified for understanding

Allocated

Walkthrough: create a linked list to store the numbers 11, 8 , 7

Walkthrough
Steps:

 Malloc and
store 7

1.

Malloc and
store 8

2.

data: 7

next: ?

data: 8

next: ?

Allocated

In the Computer Memory...

Note: This is not what it actually looks like in memory , diagram simplified for understanding

Allocated

Walkthrough: create a linked list to store the numbers 11, 8 , 7

Walkthrough
Steps:

 Malloc and
store 7

1.

Malloc and
store 8

2.

Connect 8 to
7

3.

data: 7

next: ?

data: 8

next:

Allocated

In the Computer Memory...

Note: This is not what it actually looks like in memory , diagram simplified for understanding

Allocated

Walkthrough: create a linked list to store the numbers 11, 8 , 7

Walkthrough
Steps:

 Malloc and
store 7

1.

Malloc and
store 8

2.

Connect 8 to
7

3.

Malloc and
store 11

4.

data: 7

next: ?

data: 8

next:

data: 11

next: ?

Allocated

In the Computer Memory...

Note: This is not what it actually looks like in memory , diagram simplified for understanding

Allocated

Walkthrough: create a linked list to store the numbers 11, 8 , 7

Walkthrough
Steps:

 Malloc and
store 7

1.

Malloc and
store 8

2.

Connect 8 to
7

3.

Malloc and
store 11

4.

Connect 11 to
8

5.

data: 7

next: ?

data: 8

next:

data: 11

next:

Allocated

We now have this...

Note: This is not what it actually looks like in memory , diagram simplified for understanding

Allocated

Walkthrough: create a linked list to store the numbers 11, 8 , 7

Walkthrough
Steps:

 Malloc and
store 7

1.

Malloc and
store 8

2.

Connect 8 to
7

3.

Malloc and
store 11

4.

Connect 11 to
8

5.

data: 7

next: ?

data: 8

next:

data: 11

next:

LINKED LISTS!

So really, we end up with something like this:

data: 7

next: ?

data: 8

next:

data: 11

next:

LINKED LISTS!

If we generalise it:

Keep this diagram in your head! You will need it!

... a bunch of structs containing pointers that point to other structs!!

int data

struct node *next

int data

struct node *next

int data

struct node *next

struct node struct node struct node

LINKED LISTS!

One more thing: a head pointer

Keep this diagram in your head! You will need it!

int data

struct node *next

int data

struct node *next

int data

struct node *next

struct node struct node struct node

head

LINKED LISTS!

One more thing: a head pointer

Keep this diagram in your head! You will need it!

int data

struct node *next

int data

struct node *next

int data

struct node *next

struct node struct node struct node

head

LINKED LISTS!

What about the next of the last node?: NULL

Keep this diagram in your head! You will need it!

int data

struct node *next

int data

struct node *next

int data

struct node *next

struct node struct node struct node

head NULL

LINKED LISTS!

An Empty Linked List looks like:

head NULL

With linked list, we can:
add or remove nodes anywhere easily!
change order easily!
but can only access items starting from the beginning of the
list

Me: "Can you give me the 50th item in this list?"
The Linked List: "No, go to the beginning of the list and search for it yourself!"

LINKED LISTS!

LET'S PUT THIS LINKED
LIST TOGETHER IN CODE
(W/ ACTUAL DRAWINGS)!

11->8->7->X
We will need to know how to use struct pointers and malloc!

Define a struct
for our node

Declare a pointer
to keep track of
the beginning of

list

Code to create a
node and connect
it to a linked

list

1 2 3

Steps to do this!
4

CODING TIME!
11->8->7->X

DIAG
RAM

S! DIAGRAMS!

WHAT DID
WE JUST
CODE UP?

Created a linked list by inserting
nodes at the head
We are inserting backwards;
last element inserted first

HOW DO WE INSERT
"FORWARD"?

need to insert at tail
need to know how to traverse the
linked list to get to the end to do so

CODING TIME! (AGAIN)
Traverse the linked list and print the data!

DIAG
RAM

S! DIAGRAMS!

CODING TIME! (AGAIN)
Insert at Tail

DIAG
RAM

S! DIAGRAMS!

FEEDBACK
(PRETTY PLEASE
WITH A CHERRY

ON TOP)

BUZZWORDS
OF THE DAY

NODE
NULL
HEAD
TAIL

https://forms.office.com/r/Cn8FgdFPhu

SUMMARY OF TODAY

recap (some of) pointers &
memory
intro to linked lists

insert at head
traverse a linked list
insert at tail (maybe)

NEXT LECTURE

More linked list operations!
(actually... linked list for the next 3 lectures!)

If you have any questions:

COURSE FORUM + HELP
SESSIONS!

ADMIN RELATED

CS1511@UNSW.EDU.AU

COURSE RELATED

And come say hi if you see me around on campus :D

