COMPISIIl Programming

‘@ Fundamentals

POINTERS & MEMORY RECAP

ek
L
INTRO TO “LINKED LIST”@;»

WEEK 7 LECTURE I

ASSIGNMENT |

DUE TODAY!
MONDAY 8PM

HELP SESSIONS ARE
RUNNING!

ASSIGNMENT 2
RELEASING THIS
THURSDAY
ALL ABOUT LINKED
LISTS

(ONLY 2-DAY BREAK SORRY)

ASSIGNMENT 2

LIVESTREAM
NEXT TUESDAY
[:O0PM
[13 SEMINAR RM KI7
+ YOUTUBE

EASTER CATCH UP
CLASSES
IF YOUR TUT-LAB FALLS
ON GOOD FRIDAY OR
EASTER MONDAY

SIGN UP VIA LINK ON
FORUM!

WEEK 8 REVISION
SESSIONS
COMING SOON!
KEEP AN EYE ON THE
COURSE FORUM FOR
SIGN UPS

https://cgi.cse.unsw.edu.au/~csl511/24T1/live/week 7/

Olem0
-=.-|. ;r'!i;r

El!ll o .,'r

https://cgi.cse.unsw.edu.au/~cs1511/23T3/live/week_7/

POINTERS & DYNAMIC
MEMORY ALLOCATION

Today:

e Recap (some of) Pointers & Memory
e Intro to Linked Lists

o insert at head

o traverse a linked list

o insert at tail (maybe)

Pointers & Memory Recap

2

. . Memory Stack
* a type of variable storing a

memory address |:| OXEFAC
e can point to any type of
POinterS data (int, char, struct ... E S
etc.)
Recap e can access the data |:| N
o (“dereference” using *)
e can retrieve the address of
the variable the pointer E o

points to

’

o (“address of ...” using &)

A
int * . RO~

- Memory Stack

C -

Pointers OXFF48
e -

OxFF44

] -

Pointers
Recap

1nt *

int

i

— 8;
e
“‘address of ...”

Memory Stack

number_ptr
= OxFF40

; Nnumber =8

OxFF4C

OxFF48

OxFF44

OxFF40

Pointers
Recap

1nt * .

i

Memory Stack

. _ a. number_ptr
int = 83 = OxFF40

|
{2

“address of ...”

; Nnumber =8

(|I_$§_|:: 'R__I |-~.||| } "

N

“the value in the variable the
pointer is pointing to”

OxFF4C

OxFF48

OXFF44

OxFF40

Pointers
Recap

“DECLARE”

A POINTER 1nt®|umber_ptr;

“ASSIGN A int number = 8; THEY ARE

VALUE" TO number_ptr = &number
A POINTER 21k

“address of ...”

“DEREFERENCE” printf("%sd\n" ,eumber_ptr)3
A POINTER \

“the value in the variable the
pointer is pointing to”

— |

F R,

N

“DECLARE” @) . P
A POINTER HMbET_pLis

Pointers “ASSIGN A int number = 8; This is a
VALUE” TO b tr = &humber: '
Recap /70 0 numeren variable type
“‘address of ...”

“DEREFERENCE” printf("sd\n", *number_ptr):
A POINTER \\

“the value in the variable the
pointer is pointing to”

Pointers
Recap

We can have different types of pointers...

‘1 umber_ptr:
8
(an integer)

Pointers
Recap

We can have different types of pointers...

umber _ptr:

W

(an /nteger)
har _ptr;

W

(a character)

Pointers
Recap

We can have different types of pointers...

1nt *

number_ptr 8

(an integer)

char *#
char_ptr
‘ } (a character)
double %
double_ptr 20

(a double)

1

Pointers
Recap

We can have different types of pointers...

struct student {
char first name_1initial;
char last_name_1initial;
int zID;
double exam_mark;

s

"CI’Z:CT_E"ZLJEiE'"’t_[]TI";

first_name_initigl =T

l[ast_name initial =7
struct_student_ptr —

zID = 1111
exam_mark =75

(a “struct student”)

1

Any questions about
pointers?

Mini Quiz: Will the following work in code?

1 int number;

2 1nt *number_ptr;

3

4 number_ptr = number; // 1

5

6 *number_ptr = &number; // Z
7

8 number_ptr = &number; // 3

9

10 *number_ptr = number; // 4

Mini Quiz: Will the fo“owing work in code?

1 int number;

2 1nt *number_ptr;

i number_ptr = number; // 1 NO - THEY ARE DIFFERENT TYPES
E *number_ptr = &number; // 2

; number_ptr = &number; // 3

lg *number_ptr = number; // 4

Mini Quiz: Will the fo“owing work in code?

1 int number;
2 1nt *number_ptr;
3
4 number_ptr = number; /S 1 NO - THEY ARE DIFFERENT TYPES
5
" _ _ NO - LHS IS AN INT, RHS IS A POINTER
? number_ptr &numbers; // 2 (ADDRESS)
8 number_ptr = &number; // 3
9
10 *number_ptr = number; // 4

Mini Quiz: Will the fo“owing work in code?

1 int number;
2 1nt *number_ptr;
3
4 number_ptr = number; /S 1 NO - THEY ARE DIFFERENT TYPES
5
" _ _ NO - LHS IS AN INT, RHS IS A POINTER
? number_ptr = &number; // 2 (ADDRESS)
8 number_ptr = &number; // 3 YES!
9
10 *number_ptr = number; // 4

Mini Quiz: Will the fo“owing work in code?

1
2
3
4
5
b
7
8
9

-
=

int number;
nt *number_ptr;

number_ptr = number; /S 1 NO - THEY ARE DIFFERENT TYPES

NO - LHS IS AN INT, RHS IS A POINTER

* = :
number_ptr = &number; // 2 (ADDRESS)

number_ptr = &number; // 3 YES!

*number_ptr = number; /S 4 DEPENDS - IS NUMBER_PTR INITIALISED?

Memory
Recap

Our “block of memory” looks like:

High Address

Low Address

stack

heap

data

code

Local variables, parameters
etc.(will be discussed)

malloc’d objects
(will be discussed)

Global variables/static
variables/constants

Machine Code for Programs

Our “block of memory” looks like:

High Address
Local variables, parameters

etc.(will be discussed)

stack

Memory
Recap

malloc’d objects

e (will be discussed)
Global variables/static
data .
variables/constants
code Machine Code for Programs

Low Address

Stack

e Where information about your program
goes.
o which functions are called + in
what order,
o what variables you created +

where
e When o block of code is executed { },
a stack frame is created on the stack

(roughly enough memory to store
everything in the frame is allocated to
the frame)
e When a block of code is completed, the
stack frame is removed from the stack
o anything inside stack frame is

destroyed

block of code example: functions

Stack

e Where information about your program
goes.
o which functions are called + in
what order,
o what variables you created +
where
e When a block of code is executed { }, VS
a stack frame is created on the stack)

(roughly enough memory to store
everything in the frame is allocated to
the frame)
e When a block of code is completed, the
stack frame is removed from the stack
o anything inside stack frame is

destroyed

block of code example: functions

Stack Heap

e Where information about your program
goes: e Memory allocated by the

o which functions are called + in programmer to Store datoa resides

what order, here

? what variobles you created + o won't be deallocated until it is

where explicitly freed by the

e When a block of code is executed { }, VS o
. programmer

a stack frame is created on the stack

(roughly enough memory to store ° No’fhing IS au’coma’cical(y declared

everything in the frame is allocated to or destroyed in the Heap

the frame) e can dynamically ask for/return

e When a block of code is completed, the memory as we need
stack frame is removed from the stack o using malloc(...) and free(...)

o anything inside stack frame is

destroyed

block of code example: functions

stack

heap

data

code

The Heap - malloc() A
How we can use the heap:
e malloc() = “Memory Allocation”
o take a value representing the size we want in
bytes
o allocates memory on the heap
o returns a pointer to the location on the heap
e allows us to dynamically create memory as we

need it now!

malloc(number_of_bytes_we_want)

malloc(1000):

The Heap - free() i,
stack A2~

e We can’ t keep asking for more memory without
l giving some back!
e GIVE BACK ANY UNUSED ALLOCATED SPACE bBY
USING FREE()

T Otherwise, we can have:

Memory Leaksx

e occurs when you have dynamically allocated

heap

memory (with malloc), do not free it and, memory
data is lost and cannot be freed

code free(ptr);

Memory
Recap

sizeof() v

e sizeof()
o takes in a data type
o tells us the exact number of bytes we need to
malloc
e Let me show you the magic of sizeof() with a
mini code demo

sizeof(data_type);

sizeof(int);

Putting it altogether maecieor ‘gﬁ

int *ptr = malloc(10 * sizeof(int));
M emo ry (generally sizeof(int) is 4)

Recap This will give us 10 x 4 bytes (i.e. 40bytes) which is
pointed to by ptr

Putting it altogether macieor d\g,:

1 int *ptr = malloc(x * sizeof(int));
M emo ry) X’ Is useful when you want more than one element!
Recap 3.
4
5 free(ptr):

Memory
Recap

Putting it altogether maecszeor.) W%

(with struct pointers)

1 struct student *struct student ptr
4
5 free(struct_student_ptr);

struct_student_ptr

1

2

= malloc(sizeof(struct student));

first_name_initial = ...
last_name initial = ...

zID = ...
exam_mark = ...

(a malloc-ed “struct student”)

Any questions?

End of Recap!

So far, we store a collection of
data/values using:

ARRAYS

-

2

I don't know how much space I need to store this list of things...

We have a
We can either assume a huge size and waste space, or
prOblem". not do that and run out of space...

I could use a dynamic array and realloc to increase the

memory used when needed, but that can be costly
(e.g. when you already have a large memory block)

WHAT IF...

...there is a way to store a collection of data and request for
more memory on demand easily for additional elements?

What are ?

Similar to arrays:
e another way to store a collection of the same data type
Different to arrays:
e dynamically sized (very efficient!) - ask for and give back
memory as hecessary
e elements - no need to be stored contiguously in memory
e can only access items starting from the beginning of the list

What are

Visually (very vaguely), it looks like this:

Some Data

(e.g. an integer)

Node
(i.e. an element of a linked list)

What are ?

Visually (very vaguely), it looks like this:

Node Node Node Node

How does a Linked List link up like that??

How does a Linked List link up like that??

Let's do a high-level walkthrough:
create a linked list to store the numbers 11,8, 7
as elements

Walkthrough: create a linked list to store the numbers 11,8, 7

How does a Linked List link up like that??

Firstly, we need each of our nodes to look similar to this and store the following
data:

An Integer variable - to store the number
e.qg.”/

data

where to find the
hext nhode

A variable storing the address of the next node
(I.e. a_pointer) - so there's a way to connect
nodes together

e.g. Oxoob

Walkthrough: create a linked list to store the numbers 11,8, 7

In the Computer Memory...

Walkthrough
Steps:

Note: This is not what it actually looks like in memory, diagram simplified for understanding

Walkthrough: create a linked list to store the numbers 11,8, 7

In the Computer Memory...

Walkthrough
Steps:
1. Malloc and
store 7

Note: This is not what it actually looks like in memory, diagram simplified for understanding

Walkthrough: create a linked list to store the numbers 11,8, 7

In the Computer Memorvry...

Note: This is not what it actually looks like in memory, diagram simplified for understanding

Walkthrough
Steps:
1. Malloc and
store 7
2.Malloc and
store 8

Walkthrough: create a linked list to store the numbers 11,8, 7

In the Computer Memory...

Note: This is not what it actually looks like in memory, diagram simplified for understanding

Walkthrough
Steps:
1. Malloc and
store 7
2.Malloc and
store 8

3.Connect 8 to
7

Walkthrough: create a linked list to store the numbers 11,8, 7

In the Computer Memory...

Walkthrough
Steps:

data: 11 : 1. Malloc and
store 7

2.Malloc and

. store 8
hext: ? s
3.Connect 8 to

7
4.Malloc and
store 11

Note: This is not what it actually looks like in memory, diagram simplified for understanding

Walkthrough: create a linked list to store the numbers 11,8, 7

In the Computer Memory...

data: 11
| hext: |

Note: This is not what it actually looks like in memory, diagram simplified for understanding

Walkthrough
Steps:

1. Malloc and
store 7

2.Malloc and
store 8

3.Connect 8 to
7

4.Malloc and
store 11

5.Connect 11 to
8

Walkthrough: create a linked list to store the numbers 11,8, 7

We now have this...

data: 11

Note: This is not what it actually looks like in memory , diagram simplified for understanding

Walkthrough
Steps:

1. Malloc and
store 7

2.Malloc and
store 8

3.Connect 8 to
7

4.Malloc and
store 11

5.Connect 11 to
8

So really, we end up with something like this:

struct node {

1nt :
struct node * :
| IS
If we generalise it:
struct node struct node struct node

struct node *next struct node *next

struct node *next

.. bunch of structs containing pointers that point to other structs!!

Keep this diagram in your head! You will need it!

One more thing: a head pointer

struct node struct node struct node

head

Keep this diagram in your head! You will need it!

One more thing: a head pointer

struct node struct node struct node

head

Keep this diagram in your head! You will need it!

What about the next of the last node?: NULL

struct node struct node struct node

struct node *next struct node *next struct node *next

]

nead NULL

Keep this diagram in your head! You will need it!

An Empty Linked List looks like:

head =——p NULL

With linked list, we can:
e add or remove nodes anywhere easily!
e change order easily!
e but can only access items starting from the beginning of the
list

Me: "Can you give me the 50th item in this list?"
The Linked List: "No, go to the beginning of the list and search for it yourself!"

LET'S PUT THIS LINKED
LIST TOGETHER IN CODE
(W/ ACTUAL DRAWINGS)!

11->8->7->X

We will need to know how to use struct pointers and malloc!

Define a struct peclare a pointer Code to create a
for our node to keep track of node and connect
the beginning of it to a linked
list list

\
MO
GRA D1

CODING TIME!

N->8->7->X

£

e Created a linked list by inserting
nodes at the head

e We are inserting backwards,
last element inserted first

HOW DO WE INSERT
"FORWARD"?

e need to insert at tail
e Nneed to know how to traverse the
[Inked list to get to the end to do so

GRA Drn
s GRA MS ¢

CODING TIME! (AGAIN)

Traverse the linked list and print the dataq!

£

e GRA MS

CODING TIME! (AGAIN)

Insert at Tail

https.//forms ff m/ /Cn8FgdFPhu

°* recap (some of) poin‘ters &
memory
e intro to linked lists
o insert at head
o traverse a linked list
o insert at tail (maybe)

More linked list operations!
(acfual(y... l[inked list for the next 3 lectures!)

If you have any questions:

COURSE RELATED

COURSE FORUM + HELP
SESSIONS!

ADMIN RELATED
CSIS5II@UNSW.EDVU.AV

And come say hi if you see me around on campus :D

