COMP1511 PROGRAMMING FUNDAMENTALS

LECTURE 8

Recap 2D arrays and Strings

ON MONDAY...

LAST LECTURE...

e Went back to reinforce 1D arrays

e Looked at 2D arrays (which make up
a grid and allow us to do some pretty

cool stuff)

TODAY

e Recap of 2D arrays

e Strings - some quirks and anomalies

THIS LECTURE...

and manipulation

e Command line arguments

WHERE IS THE CODE?

Live lecture code can be found here:

HTTPS://CGI.CSE.UNSW.EDU.AU/~CS1511/24T1/LIVE/WEEKQ4/

https://cgi.cse.unsw.edu.au/~cs1511/21T3/live/

ARRAY OF For example, let's say we declare an array of arrays:
ARRAYS int array[3][4];

Visually it looks like this and showing how to access

each of the grid elements:

A RECAP

col O col 1 col 2 col 3

array[0][3]

array[O][O] garray[O][1]garray[0][2]

row O

row

row 2

PROBLEM Lets do a few more questions to practice our 2D

TIME Arrays:

sUum sum_YXrow.c

matrix. lower triangular.c

3.1f time (if not next week!) Starti
tictactoe (no win conditions, not

herel) tictactoe.c

1.Sum up each row of the array and output the max

2.Decide whether the matrix is a lower triangular

ng a simple

ning serious yet

u’re a very lazy person ...
n the cellar Of your house, there are three power switches in the Oﬁ
osition, but only one of these switches controls the [ightbulb in the
teic. L
ou can’t see the lightbulb in the attic from the cellar, and yet you
sant be able to work out which switch is the one that’s connected

0 this bulb from just making one trip dp to the attic.

will you go about it!

BREAK TIME

HOW DO
WE
DECLARE A
STRING?

WHAT DOES IT LOOK
LIKE VISUALLY?

e Because strings are an array of characters, the array
type is char.

e To declare and initialise a string, you can use two
methods:

//the more convenient way

char word[] = "hello";
//this is the same as'\0':
char word[] = {'h','e','1l','1"','0','\0"'};

char char char char char char

T T 1T

HELPFUL
LIBRARY
FUNCTIONS
FOR

STRINGS

FGETS()

There is a useful function for reading strings:
fgets(array[], length, stream)

The function needs three inputs:

e array|| - the array that the string will be stored into

e length - the number of characters that will be read in

e stream - this is where this string is coming from - you
don’t have to worry about this one, in your case, it will
always be stdin (the input will always be from

terminal)
// Declare an array where you will place the

string that you read from somewhere

char array[MAX LENGTH];

// Read in the string into array of length
MAX LENGTH from terminal input
fgets(array, MAX LENGTH, stdin)

How Do I Using the NULL keyword, you can continuously get string

input from terminal until Ctrl+D is pressed
KE E P o fgets() stops reading when either length-1 characters

READI NG are read, newline character is read or an end of file is

reached, whichever comes first

STUFF IN

1 #include <stdio.h>

)
OVE R AN D 3 #define MAX_LENGTH 15
4

5 int main(void) {

6 // Declare an array where you will place the string
char array[MAX_LENGTH];

printf("Type in a string to echo: ");

? 1 // Read in the string into the array until Ctrl+D ts
® 16 // pressed, which 1s indicated by the NULL keyword

while (fgets(array, MAX_LENGTH, stdin) != NULL) {

© O 00

1 printf("The string is: \n");

14 printf("%ss", array);

15 printf("Type in a string to echo: ");
16 }

17 return 0;

18 }

HELPFUL
LIBRARY
FUNCTIONS
FOR

STRINGS

FPUTS()

Another useful function to output strings:
fputs(array[], stream)

The function needs two inputs:
e array|] - the array that the string is be stored in
e stream - this is where this string will be output to, you
don’'t have to worry about this one, in your case, it will
always be stdout (the output will always be in

terminal)
// Declare an array where you will place the
string that you read from somewhere
char array[MAX LENGTH];
// Read in the string into array of length
MAX LENGTH from terminal input
fgets(array, MAX LENGTH, stdin)
//Output the array now
fputs(array, stdout)

SOME OTHER
INTERESTING
STRING
FUNCTIONS

<STRING.H>
STANDARD LIBRARY

CHECK OUT THE REST OF THE FUNCTIONS:
HTTPS://WWW.TUTORIALSPOINT.COM/
C_STANDARD_LIBRARY/STRING_H.HTM

okA{q0
" e L

[LTl
CILF W <

Some other useful functions for strings:
e strlen()gives us the length of the string (excluding
the '\0’
e strepy()copy the contents of one string to another
o strecat()attach one string to the end of another

(concatenate)
e stremp()compare two strings
e strchr () find the first or last occurance of a

character

1 #include <stdio.h>
2 #include <string.h>

3
U S I N G 4 #define MAX_LENGTH 15
5

6 int main(void) {

7 // Declare an array

8 char word_array[MAX_LENGTH];
9

10 // Example using strcpy to copy from one string
11 // to another (destination, source)

12 strcpy(word_array, "Jax");

13 printf("%ss\n", word_array);
FUNCTIONS JE

15 // Example using strlen to find string length

16 // returns the int length NOT including '\O'

17 int length = strlen("Sasha");\n

18 printf(“"The size of string 'Sasha' is %d chars\n", length);

19

20 // Example using strcmp to compare two strings character
ST RI NGS 21 // by character - function will return:

22 // 0 = two strings are equal

25 // other int i1f not the same

24

25 int compare_string = strcmp("Jax", "Juno");

26 printf(“"The two strings are the same: %d\n", compare_string);

27

28 compare_string = strcmp(word_array, "Jax");

29 printf(“"The two strings are the same: %d\n", compare_string);

30 return 0;

Co D E TIME LetS do some Strings practice!
)

1. Implement our own strlen function that sounds the
number of characters in a string length.c

2.Reverse a word - take string input and print it in
revere rxeverse.cC

3. Count the total number of words in a string that you
read in from the user word count.c

4. Count the total number of alphabetic characters, digit
characters and special characters in a string that is

read in from the user char_count.c

COMMAN D e So far, we have only given input to our program after

we have started running that program (using scanf())
LIN E e This means our int main(void) {} function has

ARGUME NTS always been void as input

e Command line arguments allow us to give inputs to our

program at the time that we start running it! So for

WHAT ARE THEY? example:

:~% dcc testb.c -0 testh
:~% ./testb argument2 argument3 argumentd

TIME TO
CHANGE
THAT VOID

LET'S GET OUR
MAIN FUNCTION
TO ACCEPT SOME
INPUT
PARAMETERS

e [n order to change your main function to accept
command line arguments on first running, you need to

change the void input:

int main(int arge, char *argv[]) {}

e int argc = is a counter for how many command line
arguments you have (including the program name)

e char *argv|] = is an array of the different command
line arguments (separated by a spaces). Each

command line argument is a string (an array of char)

#include <stdio.h>

1
2
AN 3 int main (int argc, char *argv([]) {
4 printf("There are %d command line arguments in this program\n", argc);
-
€
7

EXAMPLE

5 //argv[0] 1s always the program name
printf("The program name is %s (argv[@])\n", argv([0]);

L

Yo

9 // What about the other command line arguments? Let's loop through
10 // the array and print them all out!
11 for (int 1 = 0; 1 < argc; i++) {
12 printf("The command line argument at index %d"
13 "argv[%d] is %s\n", i, i, argv[i]);
14 }
15
16 return O;
17]
$ dcc argv demo.c -0 argv demo
$./argv _demo We are almost half way through this term!
There are 9 command line arguments in this program
The program name is ./argv demo (argv([0])
The command line argument at index Oargv[0] is ./argv demo
The command line argument at index largv([l] is We
The command line argument at index 2argv([2] 1s are
The command line argument at index 3argv[3] is almost
The command line argument at index 4argv([4] is half
The command line argument at index 5argv[5] 1s way
The command line argument at index 6argv[6] 1is through
The command line argument at index 7argv([7] 1is this
The command line argument at index 8argv([8] 1s term!

WHAT I F e You want numbers, if you want to use your command

line arguments to perform calculations

YOU WANT e There is a useful function that converts your strings
to numbers:

N UMBE Rs atoi() in the standard library: <stdlib.h>

AND NOT

STRINGS?

REMEMBER THAT
EACH COMMAND
LINE ARGUMENT

IS A STRING

1 #include <stdio.h>
2 #include <stdlib.h>

3

4 int main (int argc, char *argv([]) {

5 '/ Remember that the command line arguments are all strings, so if you
— f ne e ;I do "y + I i1 1 ¢ _‘ \ : '-f""ﬂ Ta 1 \:“f' 'I‘I { ynvel aT=11

6 need to do mathematical operations, you will need to convert them
7 '/ to numbers
YOU WANT o You can do this with a really handy function atoi() in the stdlib.h
9
10 / Let's print out all the command Line arguments given and then add
‘I\\I\lI.]'II\"|\IE!;IEE‘I:IL:!S;’ 11 '/ them together to give the sum of the command line arguments
12
13 int sum = 0;
14 for (int 1 =1; 1 < argc; i++) {
15 printf("The command line argument at index %d (argv[%d]) is %d\n",
16 i, i1, atoi(argv[i]));
17 sum = sum + atoi(argv([i]);
18 }
ST RI N GS? 19 printf("The sum of the arguments is %d\n", sum);
O 20
21 return 0;
22 }

$ dcc atoi_démo.c -0 atol demo
$./atol demo 3 4 5 6 7

REMEMBER THAT Pe commang Fne argumen'; a:E ingex % gargv;%;; is

e comman ine argument at index argv[2]) 1s

EACH COMMAND The command line argument at index 3 (argv([3]) 1is

The command line argument at index 4 (argv[4]) 1s

LINE ARGUMENT The command line argument at index 5 (argv[5]) 1is
The sum of the arguments 1s 25

IS A STRING

~No s W

CODE TIME e Read in two numbers from the command line
:)

arguments and state whether the two numbers are

the same or not

compare_numbers « C

e Let's make it a bit more interesting, read in two
strings from the command line arguments and
compare the strings to say whether they are the same

or not!

compare_strings.c

Feedback please!

| value your feedback and use to pace the lectures and improve your overall
learning experience. If you have any feedback from today’s lecture, please
follow the link below. Please remember to keep your feedback constructive,

so | can action it and improve the learning experience.

https://forms.office.com/r/TpmZpBPi4E

WHAT DID WE LEARN TODAY?

2D ARRAY STRINGS COMMAND
RECAP ength.c LINE
o row.c everce.c ARGUMENTS
lower_triangular.c word_count.c argv_demo.c
char_count.c atoi_demo.c
maybe: tictactoe.c compare_numbers.c

compare_strings.c

REACH OUT

CONTENT RELATED

QUEST
Check out t

ONS

he forum

ADMIN QUESTIONS

cs1511@unsw.edu.au

