
COMP1511 PROGRAMMING FUNDAMENTALS

LECTURE 7
An array of arrays, 2D

LA
ST

 W
EE

K
..

.
IN WEEK 3...

Talked about the importance of style

- work neatly as you go!

Discovered functions (separate

chunks of code for reuse, help to

segment the problem)

Got introduced to arrays -

homogenous collections - stores the

same type of variable in a collection

TH
IS

 L
EC

TU
RE

..
.

TODAY...

Recap basic arrays

Strings

Array of structs (visual)

Array of arrays

WHERE IS THE CODE?

Live lecture code can be found here:
HTTPS://CGI.CSE.UNSW.EDU.AU/~CS1511/24T1/LIVE/WEEK04/

https://cgi.cse.unsw.edu.au/~cs1511/21T3/live/

Remember that arrays:

are a collection all of the same type

are declared by using a type, name and a

size of the array

you can easily access individual elements of

an array by using an index

Indexing starts at 0 and moves through until

(size - 1) of the array

go hand in hand with while loops that make

it easy to work through an array

RECAP OF
ARRAYS

RECAP OF
ARRAYS

So let's say we have this declared and initialised:

This is what it looks like visually:

0 1 2 3 4 5 6

int int int int int int int

this array holds 7 integers
Note that indexing starts at 0

int ice_cream_consum[7] = {3, 2, 1, 2, 1, 3, 5};

3 2 1 2 1 3 5

RECAP OF
ARRAYS

2 3

int int

If I wanted the third element of the array
The index would be 2, so to access it:

ice_cream_consum[2]

1

You can access any element of the array by

referencing its index

Note, that indexes start from 0

Trying to access an index that does not exist, will

result in an error

0 1 4 5 6

int int int int int

int ice_cream_consum[7] = {3, 2, 1, 2, 1, 3, 5};

3 2 1 2 3 5

RECAP OF
ARRAYS

AN EXAMPLE
PROBLEM

Problem: A user is asked to enter 10 numbers. We will

then go through these numbers and find the highest

number and output what the highest number is to the

user.

lowest_number.c

Problem: A user is asked to enter 10 numbers. We will

then go through these numbers and find the sum of

the odd numbers only.

sum_odd.c

STRINGS

WHAT ARE THEY?

Strings are a collection of characters that are joined

together

an array of characters!

There is one very special thing about strings in C - it is

an array of characters that finishes with a

This symbol is called a null terminating character

It is always located at the end of an array, therefore

an array has to always be able to accomodate this

character

It is not displayed as part of the string

It is a placeholder to indicate that this array of

characters is a string

It is very useful to know when our string has come to

an end, when we loop through the array of characters

HOW DO
WE
DECLARE A
STRING?

WHAT DOES IT LOOK
LIKE VISUALLY?

Because strings are an array of characters, the array

type is char.

To declare and initialise a string, you can use two

methods:

 //the more convenient way
char word[] = "hello";
//this is the same as'\0':
char word[] = {'h','e','l','l','o','\0'};

0 1 2 3 4 5

char char char char char char

\0eh l l 0

There is a useful function for reading strings:

The function needs three inputs:

array[] - the array that the string will be stored into

length - the number of characters that will be read in

stream - this is where this string is coming from - you

don't have to worry about this one, in your case, it will

always be stdin (the input will always be from

terminal)

HELPFUL
LIBRARY
FUNCTIONS
FOR
STRINGS
FGETS()

fgets(array[], length, stream)

// Declare an array where you will place the
string that you read from somewhere
char array[MAX_LENGTH];
// Read in the string into array of length
MAX_LENGTH from terminal input
fgets(array, MAX_LENGTH, sdin)

HOW DO I
KEEP
READING
STUFF IN
OVER AND
OVER
AGAIN?

Using the keyword, you can continuously get string

input from terminal until Ctrl+D is pressed

 fgets() stops reading when either length-1 characters

are read, newline character is read or an end of file is

reached, whichever comes first

NULL

Some other useful functions for strings:

 gives us the length of the string (excluding

the '\0'

 copy the contents of one string to another

 attach one string to the end of another

(concatenate)

 compare two strings

 find the first or last occurance of a

character

SOME OTHER
INTERESTING
STRING
FUNCTIONS

<STRING.H>
STANDARD LIBRARY

CHECK OUT THE REST OF THE FUNCTIONS:
HTTPS://WWW.TUTORIALSPOINT.COM/
C_STANDARD_LIBRARY/STRING_H.HTM

strcpy()

strlen()

strcat()

strchr()

strcmp()

USING
SOME OF
THESE
FUNCTIONS

STRINGS

BR
EA

K
 T

IM
E

TIME TO STRETCH
There are five bags of gold that all look identical, and each has ten

gold pieces in it. One of the five bags has fake gold in it. The real gold,

fake gold, and all five bags are identical in every way, except the

pieces of fake gold each weigh 1.1 grams, and the real gold pieces

each weigh 1 gram. You have a perfectly accurate digital gram scale

and can use it only once. How do you determine which bag has the

fake gold?

YOU CAN
HAVE AN
ARRAY OF
ANYTHING

AN ARRAY OF
STRUCTS

The struct for a coordinate point:

An array of structs declared:

An array of structs visually:

2 30 1 4

struct struct

struct coordinate map[5];

3

struct coordinate {
 int x;
 int y;
};

struct structstruct

1

map[0].x = 3;
map[0].y = 1;

col 2

2

2

ACCESSING
AN ELEMENT
INSIDE ARRAY
OF ARRAYS

An array of arrays is basically a grid. To declare an

array of arrays:

To access an element now you will need to:

col 3col 1 col 4

int array[3][5];

13 2 1 2

13 1 2

13 1 2

row 0

row 1

row 2
col

col 0

type array_name[num of rows][num of columns];

array[2][3];

ARRAY OF
ARRAYS

Think of the problem last week where we tracked tea

consumption for a week. What if I want to do this for

a month (a week at a time)?

col

int ice_cream[4][7];

col 2 col 3col 1 col 4

row 0

row 1

row 2

col 0 col 5 col 6

row 3

REMEMBER A
WHILE LOOP
INSIDE A
WHILE LOOP
TO PRINT A
GRID?

col

int row = 0;
while (row <= SIZE){
 int col = 0;
 while (col <= SIZE){
 printf("%d", col);
 col++;
 }
printf("\n");
row++;
}

Do you remember when we printed out a grid of

numbers in Week 2 with our while inside a while?

How can we transfer this knowledge to print out an

array of arrays?

TRANSFER
THIS TO AN
ARRAY:

FIRST RUN AROUND
THE SUN:
OUTSIDE WHILE
 ROW = 0
INSIDE WHILE
 COL = 0

col

col 2 col 3col 1

row 0

row 1

row 2

col 0

int array[3][4];
int row = 0;
while (row <= 3){
 int col = 0;
 while (col <= 4){
 printf("%d", array[row][col]);
 col++;
 }
printf("\n");
row++;
}

X

TRANSFER
THIS TO AN
ARRAY:

FIRST RUN AROUND
THE SUN:
OUTSIDE WHILE
 ROW = 0
INSIDE WHILE
 COL = 1

col

col 2 col 3col 1

row 0

row 1

row 2

col 0

int array[3][4];
int row = 0;
while (row <= 3){
 int col = 0;
 while (col <= 4){
 printf("%d", array[row][col]);
 col++;
 }
printf("\n");
row++;
}

X

TRANSFER
THIS TO AN
ARRAY:

FIRST RUN AROUND
THE SUN:
OUTSIDE WHILE
 ROW = 0
INSIDE WHILE
 COL = 2

col

col 2 col 3col 1

row 0

row 1

row 2

col 0

int array[3][4];
int row = 0;
while (row <= 3){
 int col = 0;
 while (col <= 4){
 printf("%d", array[row][col]);
 col++;
 }
printf("\n");
row++;
}

X

TRANSFER
THIS TO AN
ARRAY:

FIRST RUN AROUND
THE SUN:
OUTSIDE WHILE
 ROW = 0
INSIDE WHILE
 COL = 3

col

col 2 col 3col 1

row 0

row 1

row 2

col 0

int array[3][4];
int row = 0;
while (row <= 3){
 int col = 0;
 while (col <= 4){
 printf("%d", array[row][col]);
 col++;
 }
printf("\n");
row++;
}

X

TRANSFER
THIS TO AN
ARRAY:

SECOND RUN
AROUND THE SUN:
OUTSIDE WHILE
 ROW = 1
INSIDE WHILE
 COL = 0

col

col 2 col 3col 1

row 0

row 1

row 2

col 0

int array[3][4];
int row = 0;
while (row <= 3){
 int col = 0;
 while (col <= 4){
 printf("%d", array[row][col]);
 col++;
 }
printf("\n");
row++;
}

X

TRANSFER
THIS TO AN
ARRAY:

SECOND RUN
AROUND THE SUN:
OUTSIDE WHILE
 ROW = 1
INSIDE WHILE
 COL = 1

col

col 2 col 3col 1

row 0

row 1

row 2

col 0

int array[3][4];
int row = 0;
while (row <= 3){
 int col = 0;
 while (col <= 4){
 printf("%d", array[row][col]);
 col++;
 }
printf("\n");
row++;
}

X

TRANSFER
THIS TO AN
ARRAY:

SECOND RUN
AROUND THE SUN:
OUTSIDE WHILE
 ROW = 1
INSIDE WHILE
 COL = 2

col

col 2 col 3col 1

row 0

row 1

row 2

col 0

int array[3][4];
int row = 0;
while (row <= 3){
 int col = 0;
 while (col <= 4){
 printf("%d", array[row][col]);
 col++;
 }
printf("\n");
row++;
}

X

TRANSFER
THIS TO AN
ARRAY:

SECOND RUN
AROUND THE SUN:
OUTSIDE WHILE
 ROW = 1
INSIDE WHILE
 COL = 3

col

col 2 col 3col 1

row 0

row 1

row 2

col 0

int array[3][4];
int row = 0;
while (row <= 3){
 int col = 0;
 while (col <= 4){
 printf("%d", array[row][col]);
 col++;
 }
printf("\n");
row++;
}

X

TRANSFER
THIS TO AN
ARRAY:

THIRD RUN AROUND
THE SUN:
OUTSIDE WHILE
 ROW = 2
INSIDE WHILE
 COL = 0

col

col 2 col 3col 1

row 0

row 1

row 2

col 0

int array[3][4];
int row = 0;
while (row <= 3){
 int col = 0;
 while (col <= 4){
 printf("%d", array[row][col]);
 col++;
 }
printf("\n");
row++;
}

X

TRANSFER
THIS TO AN
ARRAY:

THIRD RUN AROUND
THE SUN:
OUTSIDE WHILE
 ROW = 2
INSIDE WHILE
 COL = 1

col

col 2 col 3col 1

row 0

row 1

row 2

col 0

int array[3][4];
int row = 0;
while (row <= 3){
 int col = 0;
 while (col <= 4){
 printf("%d", array[row][col]);
 col++;
 }
printf("\n");
row++;
}

X

TRANSFER
THIS TO AN
ARRAY:

THIRD RUN AROUND
THE SUN:
OUTSIDE WHILE
 ROW = 2
INSIDE WHILE
 COL = 2

col

col 2 col 3col 1

row 0

row 1

row 2

col 0

int array[3][4];
int row = 0;
while (row <= 3){
 int col = 0;
 while (col <= 4){
 printf("%d", array[row][col]);
 col++;
 }
printf("\n");
row++;
}

X

TRANSFER
THIS TO AN
ARRAY:

THIRD RUN AROUND
THE SUN:
OUTSIDE WHILE
 ROW = 2
INSIDE WHILE
 COL = 3

col

col 2 col 3col 1

row 0

row 1

row 2

col 0

int array[3][4];
int row = 0;
while (row <= 3){
 int col = 0;
 while (col <= 4){
 printf("%d", array[row][col]);
 col++;
 }
printf("\n");
row++;
}

X

PROBLEM
TIME

col

Let's try our hand at using a 2D array to solve a

problem!

Declare and create a 3 x 3 two-dimensional array

of integer numbers with the numbers read in

from the user. Then loop through the two-

dimensional array, printing out the values in the

first row followed by those in the second row and

so on.

Now loop through the array to count the

number of even numbers in the 2D array

2D_Arrays.c

Feedback please!
I value your feedback and use to pace the lectures and improve your overall

learning experience. If you have any feedback from today's lecture, please

follow the link below. Please remember to keep your feedback constructive,

so I can action it and improve the learning experience.

https://forms.office.com/r/S3M9ahJhhh

LIVESTREAM on

Wednesday 2:00pm

ASSIGNMENT 1
IS RELEASED

max_number.c

sum_odd.c

RECAP 1D
ARRAYS

string.c

STRINGS

WHAT DID WE LEARN TODAY?

2D_array.c

AN ARRAY OR
ARRAYS (2D)

RE
A

C
H

 O
U

T

cs1511@unsw.edu.au

ADMIN QUESTIONS

Check out the forum

CONTENT RELATED
QUESTIONS

