
COMP1511 PROGRAMMING FUNDAMENTALS

LECTURE 18
Revision: Pointers, Strings and Arrays
The final hurrah and big thank you

LA
ST

 T
IM

E.
..

Revision of Linked Lists - a few

example problems

TO
D

A
Y

..
.

Revision of pointers, arrays, and

strings with some example problems

hopefully no more stories about dead

rats

WHERE IS THE CODE?

Live lecture code can be found here:
HTTPS://CGI.CSE.UNSW.EDU.AU/~CS1511/23T1/LIVE/WEEK10/

https://cgi.cse.unsw.edu.au/~cs1511/21T3/live/

my Experience surveys
http://myexperience.unsw.edu.au/

COURSE FEEDBACK

http://myexperience.unsw.edu.au/

FACE TO FACE in Sitar/Kora labs J17:

Monday 2-4pm (Sitar) - Anivridh and Gab

ONLINE:

Wednesday 10-12pm - Salina and Liz

Come along and work on revision problems with the

support of our lovely tutors:

Register:

https://www.eventbrite.com.au/e/560086883947

REVISION
CLASSES

PLEASE BOOK NOW!

Let's see a similar problem to the exam

This is

https://cgi.cse.unsw.edu.au/~cs1511/23T1/activity/find_tot

als

REVISION
TIME!

ARRAYS

Let's see a similar problem to the exam

This is

Write a C program indivisible.c, which should print the

integers read which are not exactly divisible by any other

of the integers read. The reading until EOF is done for you,

you only have to implement the divisibility function.

You may assume that the program’s input will contain only

integers.

You may assume that all integers are >1.

REVISION
TIME!

ARRAYS

Let's see a similar problem to the exam

This is

Match the example below EXACTLY.

 $./indivisible

42

7

6

12 'Ctrl-D'

Indivisible numbers: 7 6

REVISION
TIME!

ARRAYS

Let's see a similar problem to the exam

This is

https://cgi.cse.unsw.edu.au/~cs1511/23T1/activity/array_cl

amping_max

REVISION
TIME!

ARRAYS

Let's see a similar problem to the exam

This is

Write a C program that reads integers from standard input

until it reads a negative integer. It should then print the

odd numbers on one line and then print the even numbers

on the next line.

You may assume that the program’s input will contain only

integers, in other words, you can assume scanf succeeeds.

You can assume a negative integer will always be read.

You can assume a maximum of 1000 integers are read

before a negative integer is read.

REVISION
TIME!

ARRAYS

Let's see a similar problem to the exam

This is

$./even_negative

1

2

3

2

-42

Odd numbers were: 1 3

Even numbers were: 2 2

REVISION
TIME!

ARRAYS

Pointers are another variable type in C

Pointers store the memory address of another

variable

& - gives the address of

* - dereferences a pointer, so provides the value

of stored at the address the pointer is at

REVISION
TIME!

POINTERS

Let's see an example:REVISION
TIME!

POINTERS

pointer.c

REVISION
TIME!

YOUR TURN FOR
POINTERS

pointer2.c

Write some programs using pointers to:

Swap two numbers

Add two numbers

Find the product of two numbers

REVISION
TIME!

POINTERS

Write a program in C to find the factorial of a given

number using pointers.

pointer_factorial.c

REVISION
TIME!

STRINGS

Strings are a collection of characters that are joined

together

an array of characters!

There is one very special thing about strings in C - it is

an array of characters that finishes with a

This symbol is called a null terminating character

It is always located at the end of an array, therefore

an array has to always be able to accomodate this

character

It is not displayed as part of the string

It is a placeholder to indicate that this array of

characters is a string

It is very useful to know when our string has come to

an end, when we loop through the array of characters

HOW DO
WE
DECLARE A
STRING?

WHAT DOES IT LOOK
LIKE VISUALLY?

Because strings are an array of characters, the array

type is char.

To declare and initialise a string, you can use two

methods:

 //the more convenient way
char word[] = "hello";
//this is the same as'\0':
char word[] = {'h','e','l','l','o','\0'};

0 1 2 3 4 5

char char char char char char

\0eh l l 0

array[] - the array that the string will be stored into

length - the number of characters that will be read in

stream - this is where this string is coming from - you

don't have to worry about this one, in your case, it will

always be stdin (the input will always be from

terminal)

There is a useful function for reading strings:

The function needs three inputs:

HELPFUL
LIBRARY
FUNCTIONS
FOR
STRINGS
FGETS()

fgets(array[], length, stream)

// Declare an array where you will place the
string that you read from somewhere
char array[MAX_LENGTH];
// Read in the string into array of length
MAX_LENGTH from terminal input
fgets(array, MAX_LENGTH, sdin)

HOW DO I
KEEP
READING
STUFF IN
OVER AND
OVER
AGAIN?

 fgets() stops reading when either length-1 characters

are read, newline character is read or an end of file is

reached, whichever comes first

Using the keyword, you can continuously get string

input from terminal until Ctrl+D is pressed

NULL

LET'S PLAY! Write a program that will read in a string from standard

input and then count the frequency of each character that

is in that string....

string.c

YOUR TURN
TO PLAY :)

Write a program to take in a string from user and remove

 the first occurrence of a given character from that string.

string2.c

 gives us the length of the string (excluding

the '\0'

 copy the contents of one string to another

 attach one string to the end of another

(concatenate)

 compare two strings

 find the first or last occurance of a

character

Some other useful functions for strings:SOME OTHER
INTERESTING
STRING
FUNCTIONS

<STRING.H>
STANDARD LIBRARY

CHECK OUT THE REST OF THE FUNCTIONS:
HTTPS://WWW.TUTORIALSPOINT.COM/
C_STANDARD_LIBRARY/STRING_H.HTM

strcpy()

strlen()

strcat()

strchr()

strcmp()

Thank you all so much for tuning in, for learning, for

engaging, and I hope that you had an enjoyable intro to

programming. Don't forget that Rome wasn't built in a day,

and becoming a better programmer entails lots of

practice!

I really appreciate the engagement that you have shown

throughout the lectures, and I wish you all well in the final

exam.

Have a wonderful *short* break, I hope you all get some

proper down time.

Good Luck in the exam and for your future courses, and I

may see some of you again in your later courses :)

find_totals.c

array_clamping.c

indivisible.c

REVISION:
ARRAYS

WHAT DID WE LEARN TODAY?

pointers.c

REVISION:
POINTERS

string.c

string2.c

REVISION:
STRINGS

RE
A

C
H

 O
U

T

cs1511@unsw.edu.au

ADMIN QUESTIONS

Check out the forum

CONTENT RELATED
QUESTIONS

