LECTURE 16
Starting Revision
LAST WEEK...

- Multi-files
- More linked lists
FOR OUR FINAL WEEK...

• REVISION!
Live lecture code can be found here:

HTTPS://CGI.CSE.UNSW.EDU.AU/~CS1511/23T1/LIVE/WEEK10/
Tell us about your experience and shape the future of education at UNSW.

Click the link in Moodle

Please be mindful of the UNSW Student Code of Conduct as you provide feedback. At UNSW we aim to provide a respectful community and ask you to be careful to avoid any language that is sexist, racist or likely to be hurtful. You should feel confident that you can provide both positive and negative feedback but please be considerate in how you communicate.

my Experience surveys
http://myexperience.unsw.edu.au/
Come along and work on revision problems with the support of our lovely tutors:

- **FACE TO FACE in Sitar/Kora labs J17:**
 - Monday 2-4pm (Sitar) - Anivridh and Gab
- **ONLINE:**
 - Wednesday 10-12pm - Salina and Liz

Register:
Let me show you the exam environment quickly and the different commands - good for those of you online that are not able to come in before sitting the actual exam :)

REVISION CLASSES

EXAM ENVIRONMENT
Can only access things sequentially by traversing the whole list
Can add nodes in as needed (dynamic memory allocation) - by using malloc(sizeof(struct node))
Can delete nodes as needed (by using free())
Can check for memory leaks (has everything been freed?) by using: dcc --leakcheck
head is just a pointer (not a node!) that holds the address of the first node

head = 0xB62

End of the list reached when you hit NULL

current

null

1

3

5

0xA44

0xFF0

0xB62

0xA44

0xFF0

0xB62

0xA44

0xFF0
Some special boundary conditions that you need to consider when you manipulate lists:

- Empty list
- List with 1 element
- Something happening at the beginning of the list
- Something happening at the end of the list
- Something will not occur, the item is not in the list (inserting after a number that doesn’t exist etc)
Perform some computation on a linked list

Given a linked list, print the largest value in that list

Edit the function

```c
int largest (struct node *head)
```
Problem 1: Find the range (the difference between the biggest term and the smallest term) of a linked list

(see the working files for the details spec)
Problem 2: Concatenate two linked lists (join one linked list to another)
Problem 3: Given two linked lists, return the difference in the number of items in the two lists.
Problem 4: Count all the elements in the linked list that are divisible by 6 and output the count.
Problem 5: Given two linked lists, count the number of even numbers in both linked lists and return the difference.
Week 10: The final HUZZAH
Did you enjoy your first taste of programming?
Problem 6: Insert a specified number into the middle of a linked list. Assume that there is always going to be an even number of numbers in the list before insertion.
Problem 7: Delete the first node in the list that is divisible by 6
Problem 8: Duplicate every node in the list by inserting the same node after the original node.
Problem 9: One that we make up ourselves :)

...
WHAT DID WE LEARN TODAY?

REVISION

Linked Lists
problem1.c
problem2.c
problem3.c
problem4.c
problem5.c
problem6.c

REVISION

problem7.c
problem8.c
problem9.c