## COMP1511 PROGRAMMING FUNDAMENTALS

## LECTURE 16

- Multi-files
- More linked lists
- REVISION!


## WHERE IS THE CODE?

## 品回 Live lecture code can be found here:

## COURSE FEEDBACK


my Experience surveys http://myexperience.unsw.edu.au/

## REVISION CLASSES

## PLEASE BOOK NOW!

Come along and work on revision problems with the support of our lovely tutors:

- FACE TO FACE in Sitar/Kora labs J17:
- Monday 2-4pm (Sitar) - Anivridh and Gab
- ONLINE:
- Wednesday 10-12pm - Salina and Liz

Register:
https://www.eventbrite.com.au/e/560086883947

## REVISION CLASSES

Let me show you the exam environment quickly and the different commands - good for those of you online that are not able to come in before sitting the actual exam :)

## EXAM

 ENVIRONMENT
## LINKED LISTS

## REVISION

- Can only access things sequentially by traversing the whole list
- Can add nodes in as needed (dynamic memory allocation) - by using malloc(sizeof(struct node))
- Can delete nodes as needed (by using free()
- Can check for memory leaks (has everything been freed?) by using: dcc --leakcheck
head is just a pointer (not a node!) that holds

End of the
the address of
the first node
list reached when you hit NULI


## LINKED LISTS

## REVISION

- Some special boundary conditions that you need to consider when you manipulate lists:
- Empty list
- List with 1 element
- Something happening at the beginning of the list
- Something happening at the end of the list
- Something will not occur, the item is not in the list (inserting after a number that doesn't exist etc)


## THE EXAM

Perform some computation on a linked list

## EXAMPLE QUESTION 2

Given a linked list, print the largest value in that list

Edit the function
int largest (struct node *head)

Problem 1: Find the range (the difference between the biggest term and the smallest term) of a linked list
(see the working files for the details spec)

000
Problem 2: Concatenate two linked lists (join one linked list to another)

000
Problem 3: Given two linked lists, return the difference in the number of items in the two lists.

000
Problem 4: Count all the elements in the linked list that are divisible by 6 and output the count.

000
Problem 5: Given two linked lists, count the number of even numbers in both linked lists and return the difference.

## Week 10: The final HUZZAH

Did you enjoy your first taste of programming?

Problem 6: Insert a specified number into the middle of a linked list. Assume that there is always going to be an even number of numbers in the list before insertion.

Problem 7: Delete the first node in the list that is divisible by 6

Problem 8: Duplicate every node in the list by inserting the same node after the original node.

000
Problem 9: One that we make up ourselves :)

## WHAT DID WE LEARN TODAY?

| REVISION | REVISION |
| :--- | :---: |
| Linked Lists | problem7.c <br> problem8.c |
| problem1.c | problem9.c |
| problem2.c |  |
| problem3.c |  |
| problem4.c |  |
| problem5.c |  |
| problem6.c |  |



CONTENT RELATED QUESTIONS

Check out the forum

ADMIN QUESTIONS
cs1511@unsw.edu.au

