
LECTURE
13/14
Insert anywhere in the linked list
Time to delete from a linked list

COMP1511 PROGRAMMING FUNDAMENTALS

LA
ST

 W
EE

K
..

.

Linked Lists -

creating a list

inserting nodes at the head

traversing a list

inserting nodes at the tail

TO
D

A
Y

..
.

Linked Lists -

inserting anywhere in a linked list

deleting nodes in a list

at the head

at the tail

in the middle

with only one item in a list

WHERE IS THE CODE?

Live lecture code can be found here:
HTTPS://CGI.CSE.UNSW.EDU.AU/~CS1511/23T1/LIVE/WEEK08/

https://cgi.cse.unsw.edu.au/~cs1511/21T3/live/

A LINKED
LIST

WHY?

Linked lists are dynamically sized, that means we can

grow and shrink them as needed - efficient for

memory!

Elements of a linked list (called nodes) do NOT need to

be stored contiguously in memory, like an array.

We can add or remove nodes as needed anywhere in

the list, without worrying about size (unless we run

out of memory of course!)

We can change the order in a linked list, by just

changing where the next pointer is pointing to!

Unlike arrays, linked lists are not random access data

structures! You can only access items sequentially,

starting from the beginning of the list.

A LINKED
LIST IS
MADE UP OF
NODES

WHAT IS A NODE?

Each node has some data and a pointer to the next

node (of the same data type), creating a linked

structure that forms the list

Let me propose a node structure like this:

struct node {
 int data;
 struct node *next;
};

int data

node

struct
node
*next;

some data of type int

a pointer to the next node,
which also has some data
and a pointer to the node
after that... etc

A LINKED
LIST IS
MADE UP OF
MANY
NODES

THE NODES ARE
LINKED TOGETHER (A
SCAVENGER HUNT
OF POINTERS)

We can create a linked list, by having many nodes

together, with each struct node next pointer giving us

the address of the node that follows it

But how do I know where the linked list starts?

int data

node

struct
node
*next;

int data

node

struct
node
*next;

int data

node

struct
node
*next;

A LINKED
LIST IS
MADE UP OF
MANY
NODES

THE NODES ARE
LINKED TOGETHER (A
SCAVENGER HUNT
OF POINTERS)

What about a pointer to the first node?

How do I know when my list is finished?

int data

node

struct
node
*next;

int data

node

struct
node
*next;

int data

node

struct
node
*next;

A pointer to the
first node (not a
node itself, but has
the memory address
of where the first
node is!

A pointer
to the
first node

A LINKED
LIST IS
MADE UP OF
MANY
NODES

THE NODES ARE
LINKED TOGETHER (A
SCAVENGER HUNT
OF POINTERS)

Pointing to a NULL at the end!

int data

node

struct
node
*next;

int data

node

struct
node
*next;

int data

node

struct
node
*next;

A pointer
to the
first node

NULL

For example, a list with: 1, 3, 5A LINKED
LIST IS
MADE UP OF
MANY
NODES

THE NODES ARE
LINKED TOGETHER (A
SCAVENGER HUNT
OF POINTERS)

1

node

0xA44

node node

head = 0xFF0
NULL

0xFF0 0xA44 0x3B4

0x666

3

0x3B4

5

NULL

A LINKED
LIST

HOW DO WE CREATE
ONE AND INSERT
INTO IT?

In order to create a linked list, we would need to

Define struct for a node,

A pointer to keep track of where the start of the

list is and

A way to create a node and then connect it into

our list...

A LINKED
LIST

HOW DO WE CREATE
ONE AND INSERT
INTO IT?

Let's say we wanted to create a linked list with 5, 3, 1

Let's create the first node to start the list!

A pointer to keep track of where the start of the

list is and by default the first node of the list

It will point to NULL as there are no other nodes

in this list.

1

NULL

head = 0xFF0

0xFF00x666

NULL

node

A LINKED
LIST

HOW DO WE CREATE
ONE AND INSERT
INTO IT?

Create the next node to store 3 into (you need

memory)

Assign 3 to data

and insert it at the beginning so the head would now

point to it and the new node would point to the old

head

3

0xFF0

head = 0xA44

0xFF0

0x666

NULL

node

1

NULL

0xA44

node

A LINKED
LIST

HOW DO WE CREATE
ONE AND INSERT
INTO IT?

Create the next node to store 5 into (you need

memory)

Assign 5 to data

and insert it at the beginning so the head would now

point to it and the new node would point to the old

head

3

0xA44

head = 0xB62

0xA44

0x666
NULL

node

1

NULL

0xFF0

node

0xFF0

node

0xB62

5

0x666
NULL

LINKED
LISTS

INSERTING

Where can I insert in a linked list?

At the head

Between any two nodes that exist

After the tail as the last node

3

head = 0xB62

0xFF0

5

NULL

0xA44

0xA44

0xB62

1

0xFFO

A LINKED
LIST

PUTTING IT ALL
TOGETHER IN CODE

Define our struct for a node

 A pointer to keep track of where the start of the list

is:

The pointer would be of type struct node, because

it is pointing to the first node

The first node of the list is often called the 'head'

of the list (last element is often called the 'tail')

A way to create a node and then connect it into our

list...

Create a node by first creating some space for

that node (malloc)

Initialise the data component on the node

Initialise where the node is pointing to

1.

2.

3.

4. Make sure last node is pointing to NULL

SO
TRAVERSING
A LINKED
LIST...

The only way we can make our way through the linked

list is like a scavenger hunt, we have to follow the

links from node to node (sequentially! we can't skip

nodes)

We have to know where to start, so we need to know

the head of the list

When we reach the NULL pointer, it means we have

come to the end of the list.

LINKED
LISTS

INSERTING

You should always consider and make sure your

solution works:

Inserting into an empty list

Inserting at the head of the list

Inserting after the first node if there is only one

node

...

Draw a diagram!!!! It will allow you to easily see what

are some potential pitfalls

LINKED
LISTS

INSERT IN
THE MIDDLE

Let's consider an easy case to insert in the middle,

find the size of the list and then divide that by 2 to

find the middle...

0x666

NULL

3

head = 0xB62

0xFF0

5

NULL

0xA44

0xA44

0xB62

1

0xAAA

3

0xAAA

0xFFO

0x666

NULL

0xFF0

LINKED
LISTS

INSERT IN
THE MIDDLE

Move through the list to get to the second node

3

head = 0xB62

5

NULL

0xA44

0xA44

0xB62

1

0xAAA

3

0xAAA

0xFFO

current

0x666

NULL

0xFF0

LINKED
LISTS

INSERT IN
THE MIDDLE

Move through the list to get to the second node

3

head = 0xB62

5

NULL

0xA44

0xA44

0xB62

1

0xAAA

3

0xAAA

0xFFO

current

0x666

NULL

0xFF0

LINKED
LISTS

INSERT IN
THE MIDDLE

Make a new node to insert

3

head = 0xB62

5

0xA44

0xA44

0xB62

1

0xAAA

3

0xAAA

0xFFO

current

13

0xBBB

NULL
NULL

0x666

NULL

0xFF0

LINKED
LISTS

INSERT IN
THE MIDDLE

Connect the node in between the two nodes

3

head = 0xB62

5

0xA44

0xA44

0xB62

1

0xBBB

3

0xAAA

0xFFO

current

13

0xBBB

0xAAA
NULL

LET'S
INSERT
IN THE
MIDDLE?

Great!

Let't think of some conditions that may break this ...

What happens if it is an empty list?

What happens if there is only one item in the list?

How can we safeguard?

LET'S
INSERT
AFTER A
PARTICULAR
NODE?

What about inserting in order into an ordered list?

Let's try that as a problem and then walk through the

code...

So for example, I have a list with 1, 3, 5 and I wanted

to insert a 4 into this list - it would go after 3 ...

Let's try it!

LINKED
LISTS

INSERTING
A NODE

In all instances, we follow a similar structure of what

to do when inserting a node. Please draw a diagram

for yourself to really understand what you are

inserting and the logic of inserting in a particular way.

To insert a node in a linked list:

Find where you want to insert the node (stop at

the node after which you want to insert)

Malloc a new node for yourself

Point the new_node->next to the current->next

Change the current->next to point to the new

node

Consider possible edge cases, empty list, inserting

at the head with only one item, etc etc.

BR
EA

K
 T

IM
E.

..

Can you determine how many times do the minute and

hour hands of a clock overlap in a day?

LINKED
LISTS

DELETING

Where can I delete in a linked list?

Nowhere (if it is an empty list - edge case!)

At the head (deleting the head of the list)

Between any two nodes that exist

At the tail (last node of the list)

LINKED
LISTS

DELETING
EMPTY LIST

Deleting when nowhere! (it is an empty list)

Check if list is empty

If it is - return NULL

struct node *current = head;
if (current == NULL){
 return NULL;
}

LINKED
LISTS

DELETING
ONE ITEM

Deleting when there is only one item in the list

head = 0xB62

0x666

NULL

0xB62

1

NULL

0x666

LINKED
LISTS

DELETING
ONE ITEM

Deleting when there is only one item in the list

free the head!

head = 0xB62

NULL

0xB62

1

NULL

LINKED
LISTS

DELETING
THE HEAD
WITH OTHER
ITEMS

Deleting when at the head of the list with other items

in the list

Find the node that you want to delete (the head)

3

head = 0xB62

0xFF0

0x666

NULL

5

NULL

0xA44

0xA44

0xB62

1

0xFFO

struct node *current = head

current current->next

LINKED
LISTS

DELETING
THE HEAD
WITH OTHER
ITEMS

Deleting when at the head of the list with other items

in the list

Point the head to the next node

3

new_head = 0xA44

0xFF0

0x666

NULL

5

NULL

0xA44

0xA44

0xB62

1

0xFFO

struct node *new_head = current->next;

current current->next

NULL

LINKED
LISTS

DELETING
THE HEAD
WITH OTHER
ITEMS

Deleting when at the head of the list with other items

in the list

Delete the current head

3

new_head = 0xA44

0xFF0

5

NULL

0xA44

0xA44

0xB62

1

0xFFO

free(current);

current current->next

NULL

LINKED
LISTS

DELETING
IN MIDDLE
OF TWO
NODES

Deleting when in the middle of two nodes (for

example, node with 3)

Set the head to a variable current to keep track

of the loop

3

head = 0xB62

0xFF0

5

NULL

0xA44

0xA44

0xB62

1

0xFFO

current current->next

struct node *current = head

NULL

LINKED
LISTS

DELETING
IN MIDDLE
OF TWO
NODES

Deleting when in the middle of two nodes (for

example, node with 3)

Loop until you find the right node - what do we

think loop until the node with 3 or the previous

node? Remember that once you are on the node

with 3, you have no idea what previous node was.

3

head = 0xB62

0xFF0

5

NULL

0xA44

0xA44

0xB62

1

0xFFO

current current->next

NULL

LINKED
LISTS

DELETING
IN MIDDLE
OF TWO
NODES

Deleting when in the middle of two nodes (for

example, node with 3)

So stop at a previous node (when the next is = 3)

3

head = 0xB62

0xFF0

5

NULL

0xA44

0xA44

0xB62

1

0xFFO

current current->next

while (current->next->data != 3){
 current = current->next;
}

NULL

LINKED
LISTS

DELETING
IN MIDDLE
OF TWO
NODES

Deleting when in the middle of two nodes (for

example, node with 3)

Create new next node to store address

3

head = 0xB62

0xFF0

5

NULL

0xA44

0xA44

0xB62

1

0xFFO

current current->next

struct node *new_next = current->next->next;

new_next

NULL

LINKED
LISTS

DELETING
IN MIDDLE
OF TWO
NODES

Deleting when in the middle of two nodes (for

example, node with 3)

Delete current->next

3

head = 0xB62

0xFF0

5

NULL

0xA44

0xA44

0xB62

1

0xFFO

current

free(current->next);

new_next

NULL

current->next

LINKED
LISTS

DELETING
IN MIDDLE
OF TWO
NODES

Deleting when in the middle of two nodes (for

example, node with 3)

Set the new current->next to the new_next node

3

head = 0xB62

0xFF0

5

NULL

0xA44

0xA44

0xB62

1

0xFFO

current

current->next = new_next;

NULL

current->next

LINKED
LISTS

DELETING
THE TAIL

Deleting when in the tail

Set the current pointer to the head of the list

3

head = 0xB62

0xFF0

5

NULL

0xA44

0xA44

0xB62

1

0xFFO

current

struct node *current = head

current->next-
>next

NULL

current->next

LINKED
LISTS

DELETING
THE TAIL

Deleting when in the tail

Find the tail of the list (should I stop on the tail or

before the tail?)

If the next is NULL than I am at the tail...

3

head = 0xB62

0xFF0

5

NULL

0xA44

0xA44

0xB62

1

0xFFO

current

while (current->next->next != NULL){
 current = current->next;
}

NULL

current->next

LINKED
LISTS

DELETING
THE TAIL

Deleting when in the tail

Delete the current->next node

3

head = 0xB62

0xFF0

5

NULL

0xA44

0xA44

0xB62

1

0xFFO

current

free(current->next);

NULL

LINKED
LISTS

DELETING
THE TAIL

Deleting when in the tail

Point my current->next node to a NULL

3

head = 0xB62

0xA44

0xA44

0xB62

1

0xFFO

current

current->next = NULL;

LINKED
LISTS

DELETING
A NODE

In all instances, we follow a similar structure of what

to do when deleting a node. Please draw a diagram for

yourself to really understand what you are deleting

and the logic of deleting in a particular way.

To delete a node in a linked list:

Find the previous node to the one that is being

deleted

Change the next of the previous node

Free the node that is to be deleted

Consider possible edge cases, deleting if there is

nothing in the list, deleting when there is only one

item in the list, deleting the head of the list,

deleting the tail of the list, etc.

LINKED
LISTS

DELETING
A NODE

Feedback please!
I value your feedback and use to pace the lectures and improve your overall

learning experience. If you have any feedback from today's lecture, please

follow the link below. Please remember to keep your feedback constructive,

so I can action it and improve the learning experience.

https://www.menti.com/al6spfu1chi4

linked_list.c

LINKED LISTS
- DELETING

WHAT DID WE LEARN TODAY?

linked_list.c

LINKED LISTS
- INSERT

ANYWHERE

cs1511@unsw.edu.au

ADMIN QUESTIONS

Check out the forum

CONTENT RELATED
QUESTIONS

RE
A

C
H

 O
U

T

