COMP1511 PROGRAMMING FUNDAMENTALS

LECTURE 9

Recap Command Line Arguments
Pointers

LAST WEEK...

e 2D Arrays
e Strings
e Command Line Arguments (went into

overdrive with excitement)

e The lovely Dr Andrew Taylor will be
taking you through the content:
o Recap command line arguments

o Start looking at pointers

WHERE IS THE CODE?

Live lecture code can be found here:

Fip

HTTPS://CGI.CSE.UNSW.EDU.AU/~CS1511/23T1/LIVE/WEEKOQS5/

hE;
Inf:
[m]

https://cgi.cse.unsw.edu.au/~cs1511/21T3/live/

ST RI N Gs e Strings are a collection of characters that are joined

together

RE CAP o an array of characters!

e There is one very special thing about strings in C - it is
an array of characters that finishes witha "\ 0"

o This symbol is called a null terminating character

o |t is always located at the end of an array, therefore
an array has to always be able to accomodate this
character

e |t is not displayed as part of the string

e |t is a placeholder to indicate that this array of
characters is a string

e |t is very useful to know when our string has come to

an end, when we loop through the array of characters

HOW DO
WE
DECLARE A
STRING?

WHAT DOES IT LOOK
LIKE VISUALLY?

e Because strings are an array of characters, the array
type is char.

e To declare and initialise a string, you can use two
methods:

//the more convenient way
char word[] = "hello";

//this is the same as'\0':
char word[] = {'h','e','1l','1','0"',"'\0"'};

char char char char char char

T T 1T

HELPFUL
LIBRARY
FUNCTIONS
FOR

STRINGS

FGETS()

There is a useful function for reading strings:
fgets(array[], length, stream)

The function needs three inputs:

e array|] - the array that the string will be stored into

e length - the number of characters that will be read in

e stream - this is where this string is coming from - you
don’t have to worry about this one, in your case, it will
always be stdin (the input will always be from

terminal)
// Declare an array where you will place the

string that you read from somewhere

char array[MAX LENGTH];

// Read in the string into array of length
MAX LENGTH from terminal input
fgets(array, MAX LENGTH, sdin)

How Do I Using the NULL keyword, you can continuously get string

input from terminal until Ctrl+D is pressed
KE E P o fgets() stops reading when either length-1 characters

READI NG are read, newline character is read or an end of file is

reached, whichever comes first

STUFF IN

1 #include <stdio.h>

)
OVE R AN D 3 #define MAX_LENGTH 15
4

5 int main(void) {

6 // Declare an array where you will place the string
char array[MAX_LENGTH];

printf("Type in a string to echo: ");

? 1 // Read in the string into the array until Ctrl+D ts
® 16 // pressed, which 1s indicated by the NULL keyword

while (fgets(array, MAX_LENGTH, stdin) != NULL) {

© O 00

1 printf("The string is: \n");

14 printf("%ss", array);

15 printf("Type in a string to echo: ");
16 }

17 return 0;

18 }

COMMAN D e So far, we have only given input to our program after

we have started running that program (using scanf())
LIN E e This means our int main(void) {} function has

ARGUME NTS always been void as input

e Command line arguments allow us to give inputs to our

program at the time that we start running it! So for

WHAT ARE THEY? example:

:~% dcc testb.c -0 testh
:~% ./testb argument2 argument3 argumentd

TIME TO
CHANGE
THAT VOID

LET'S GET OUR
MAIN FUNCTION
TO ACCEPT SOME
INPUT
PARAMETERS

e [n order to change your main function to accept
command line arguments on first running, you need to

change the void input:

int main(int argce, char *argv[]) {}

e int argc = is a counter for how many command line
arguments you have (including the program name)

e char *argv[] = is an array of the different command
line arguments (separated by a spaces). Each

command line argument is a string (an array of char)

#include <stdio.h>

1
2
AN 3 int main (int argc, char *argv([]) {
4 printf("There are %d command line arguments in this program\n", argc);
-
€
7

EXAMPLE

5 //argv[0] 1s always the program name
printf("The program name is %s (argv[@])\n", argv([0]);

L

Yo

9 // What about the other command line arguments? Let's loop through
10 // the array and print them all out!
11 for (int 1 = 0; 1 < argc; i++) {
12 printf("The command line argument at index %d"
13 "argv[%d] is %s\n", i, i, argv[i]);
14 }
15
16 return O;
17]
$ dcc argv demo.c -0 argv demo
$./argv _demo We are almost half way through this term!
There are 9 command line arguments in this program
The program name is ./argv demo (argv([0])
The command line argument at index Oargv[0] is ./argv demo
The command line argument at index largv([l] is We
The command line argument at index 2argv([2] 1s are
The command line argument at index 3argv[3] is almost
The command line argument at index 4argv([4] is half
The command line argument at index 5argv[5] 1s way
The command line argument at index 6argv[6] 1is through
The command line argument at index 7argv([7] 1is this
The command line argument at index 8argv([8] 1s term!

WHAT I F e You want numbers, if you want to use your command

line arguments to perform calculations

YOU WANT e There is a useful function that converts your strings
to numbers:

N UMBE Rs atoi() in the standard library: <stdlib.h>

AND NOT

STRINGS?

REMEMBER THAT
EACH COMMAND
LINE ARGUMENT

IS A STRING

1 #include <stdio.h>
2 #include <stdlib.h>

-

-

4 int main (int argc, char *argv([]) {

5 '/ Remember that the command line arguments are all strings, so if you
— f ne e ;I do "y + I i1 1 ¢ _‘ \ : '-f""ﬂ Ta 1 \:“f' 'I‘I { ynvel aT=11

6 need to do mathematical operations, you will need to convert them
7 '/ to numbers
YOU WANT o You can do this with a really handy function atoi() in the stdlib.h
9
10 / Let's print out all the command Line arguments given and then add
‘I\\I\lI.]'II\"|\IE!;IEE‘I:IL:!S;’ 11 '/ them together to give the sum of the command line arguments
12
13 int sum = 0;
14 for (int 1 =1; 1 < argc; i++) {
15 printf("The command line argument at index %d (argv[%d]) is %d\n",
16 i, i1, atoi(argv[i]));
17 sum = sum + atoi(argv([i]);
18 }
ST RI N GS? 19 printf("The sum of the arguments is %d\n", sum);
O 20
21 return 0;
22 }

$ dcc atoi_démo.c -0 atol demo
$./atol demo 3 4 5 6 7

REMEMBER THAT Pe commang Fne argumen'; a:E ingex % gargv;%;; is

e comman ine argument at index argv[2]) 1s

EACH COMMAND The command line argument at index 3 (argv([3]) 1is

The command line argument at index 4 (argv[4]) 1s

LINE ARGUMENT The command line argument at index 5 (argv[5]) 1is
The sum of the arguments 1s 25

IS A STRING

~No s W

CODE TIME e Read in two numbers from the command line
:)

arguments and state whether the two numbers are

the same or not

compare_numbers « C

e Let's make it a bit more interesting, read in two
strings from the command line arguments and
compare the strings to say whether they are the same

or not!

compare_strings.c

Can you reproduce this figure using just one line, without

BREAK TIME

lifting the pen and without going back over an already

drawn line?

POINTERS

e A pointer is another variable that stores a memory
address of a variable
e This is very powerful, as it means you can modify

things at the source (this also has certain

implications for functions which we will look at in a
bit)

e To declare a pointer, you specify what type the
pointer points to with an asterisk:
type pointing to *name of variable;

o For example, if your pointer points to an int:

int *pointer;

VISUALLY
WHAT IS
HAPPENING?

Memory Stack

// Declare a variable of

// type int. called number OxXFF4C
// Assign the value 13 to
// box
int number = 2; OxFF48
// Declare a polnter

OxFF44

// variable that poin
// an int and assign the
// address of number to it

int *number ptr = &number; OxFF40
// So now:
number = 13
AND

number ptr = OxXFF40

POINTERS

1) Declare a pointer with a * - this is where you will
specify what type the pointer points to. For example, a
pointer that stores the address of an int type variable:
int *number ptr;

2) Initialise a pointer - assign the address to the variable
with &

number ptr = &number;

3) Dereference a pointer - using a *, go to the address
that this pointer variable is assigned and find what is at
that address

*number_ ptr

Achievement..... d3TecTiv3

Po I N T E RS 1. Declare a pointer with

a * - this is where you L . .
, , 2. Initialise a pointer - assign
will specify what type

TH E RE ARE the pointer points to the addres;//z;z gje variable
TH RE E PARTS #inc lude <stdio.h=

int main (void) {
TO A POINTER

//Declare a variable of typz int, called box.
//Assign value 6 to box
int box = 6;

//Declare a pointer variable that points to an int.
‘/Assign the address c¢” box to it

*box_ptri& &box:

printf("The value of the variable 'box' located at address %p 1s %d\n"
, boX ptr, | *box ptril;

return 0;

3. Dereference a pointer -Using a *, go to the address that
this pointer variable is assigned and find what is at that
address

COMMON Let me know in the chat - will this work or not? (yay or
MISTAKES/ [
int number;
SYN TAX int *number_ptr;
number ptr = number;

*number ptr= &number;

number ptr= &number;

*number ptr= number;

CODE CODE e A simple pointers example
CODE

A SIMPLE POINTERS
EXAMPLE

pointers simple.c

CODE CODE
CODE

ARRAYS AND POINTERS AND
FUNCTIONS - LET'S BRING IT
ALL TOGETHER...

shufflin.c

e Let's see and use some pointers. Now remember that
you can only return one thing back to main and you

can't return an array”

e The problem is this:
Read in an array of numbers (user will specify how many
numbers they plan to read in). Then the first number and
the last number in the array will be swapped, and the

modified array printed out again.

e S0 without using pointers, can you have a swapping
function that swaps out two things? How would you

return both of those things back to the main?

Feedback please!

| value your feedback and use to pace the lectures and improve your overall
learning experience. If you have any feedback from today’s lecture, please
follow the link below. Please remember to keep your feedback constructive,

so | can action it and improve the learning experience.

https://www.menti.com/al86yb6y82aex

WHAT DID WE LEARN TODAY?

STRINGS COMMAN LINE POINTERS
RECAP ARGUMENTS ,
shufflin.c
RECAP

compare_numbers.c

compare_strings.c

REACH OUT

CONTENT RELATED

QUEST
Check out t

ONS

ne forum

ADMIN QUESTIONS

cs1511@unsw.edu.au

