
COMP1511 PROGRAMMING FUNDAMENTALS

LECTURE 9
Recap Command Line Arguments
Pointers

LA
ST

 W
EE

K
..

.

2D Arrays

Strings

Command Line Arguments (went into

overdrive with excitement)

 T
O

D
A

Y
..

.

The lovely Dr Andrew Taylor will be

taking you through the content:

Recap command line arguments

Start looking at pointers

WHERE IS THE CODE?

Live lecture code can be found here:
HTTPS://CGI.CSE.UNSW.EDU.AU/~CS1511/23T1/LIVE/WEEK05/

https://cgi.cse.unsw.edu.au/~cs1511/21T3/live/

STRINGS
RECAP

Strings are a collection of characters that are joined

together

an array of characters!

There is one very special thing about strings in C - it is

an array of characters that finishes with a

This symbol is called a null terminating character

It is always located at the end of an array, therefore

an array has to always be able to accomodate this

character

It is not displayed as part of the string

It is a placeholder to indicate that this array of

characters is a string

It is very useful to know when our string has come to

an end, when we loop through the array of characters

'\0'

HOW DO
WE
DECLARE A
STRING?

WHAT DOES IT LOOK
LIKE VISUALLY?

Because strings are an array of characters, the array

type is char.

To declare and initialise a string, you can use two

methods:

 //the more convenient way
char word[] = "hello";
//this is the same as'\0':
char word[] = {'h','e','l','l','o','\0'};

0 1 2 3 4 5

char char char char char char

\0eh l l 0

array[] - the array that the string will be stored into

length - the number of characters that will be read in

stream - this is where this string is coming from - you

don't have to worry about this one, in your case, it will

always be stdin (the input will always be from

terminal)

There is a useful function for reading strings:

The function needs three inputs:

HELPFUL
LIBRARY
FUNCTIONS
FOR
STRINGS
FGETS()

fgets(array[], length, stream)

// Declare an array where you will place the
string that you read from somewhere
char array[MAX_LENGTH];
// Read in the string into array of length
MAX_LENGTH from terminal input
fgets(array, MAX_LENGTH, sdin)

HOW DO I
KEEP
READING
STUFF IN
OVER AND
OVER
AGAIN?

 fgets() stops reading when either length-1 characters

are read, newline character is read or an end of file is

reached, whichever comes first

Using the keyword, you can continuously get string

input from terminal until Ctrl+D is pressed

NULL

COMMAND
LINE
ARGUMENTS

WHAT ARE THEY?

So far, we have only given input to our program after

we have started running that program (using scanf())

This means our function has

always been void as input

Command line arguments allow us to give inputs to our

program at the time that we start running it! So for

example:

int main(void) {}

TIME TO
CHANGE
THAT VOID

LET'S GET OUR
MAIN FUNCTION
TO ACCEPT SOME
INPUT
PARAMETERS

In order to change your main function to accept

command line arguments on first running, you need to

change the void input:

int argc = is a counter for how many command line

arguments you have (including the program name)

char *argv[] = is an array of the different command

line arguments (separated by a spaces). Each

command line argument is a string (an array of char)

int main(int argc, char *argv[]) {}

AN
EXAMPLE

WHAT IF
YOU WANT
NUMBERS
AND NOT
STRINGS?

REMEMBER THAT
EACH COMMAND
LINE ARGUMENT
IS A STRING

You want numbers, if you want to use your command

line arguments to perform calculations

There is a useful function that converts your strings

to numbers:

 in the standard library: <stdlib.h> atoi()

WHAT IF
YOU WANT
NUMBERS
AND NOT
STRINGS?

REMEMBER THAT
EACH COMMAND
LINE ARGUMENT
IS A STRING

CODE TIME
:)

Read in two numbers from the command line

arguments and state whether the two numbers are

the same or not

Let's make it a bit more interesting, read in two

strings from the command line arguments and

compare the strings to say whether they are the same

or not!

compare_numbers.c

compare_strings.c

BR
EA

K
 T

IM
E

Can you reproduce this figure using just one line, without

lifting the pen and without going back over an already

drawn line?

POINTERS

������

A pointer is another variable that stores a memory

address of a variable

This is very powerful, as it means you can modify

things at the source (this also has certain

implications for functions which we will look at in a

bit)

To declare a pointer, you specify what type the

pointer points to with an asterisk:

For example, if your pointer points to an int:

int *pointer;

type_pointing_to *name_of_ variable;

VISUALLY
WHAT IS
HAPPENING?

// Declare a variable of
// type int. called number
// Assign the value 13 to
// box
int number = 2;

// Declare a pointer
// variable that points to
// an int and assign the
// address of number to it
int *number_ptr = &number;

Memory Stack

0xFF40

0xFF44

0xFF48

0xFF4C

number = 2;

// So now:
number = 13
AND
number_ptr = 0xFF40

POINTERS 1) Declare a pointer with a * - this is where you will

specify what type the pointer points to. For example, a

pointer that stores the address of an int type variable:

2) Initialise a pointer - assign the address to the variable

with &

3) Dereference a pointer - using a * , go to the address

that this pointer variable is assigned and find what is at

that address

int *number_ptr;

*number_ptr

number_ptr = &number;

Achievement.....d3TecTiv3

POINTERS

THERE ARE
THREE PARTS
TO A POINTER

Declare a pointer with
a * - this is where you
will specify what type
the pointer points to

1.

2. Initialise a pointer - assign
the address to the variable

with &

3. Dereference a pointer -Using a * , go to the address that
this pointer variable is assigned and find what is at that

address

COMMON
MISTAKES/
SYNTAX

Let me know in the chat - will this work or not? (yay or

nay)

int number;
int *number_ptr;

*number_ptr= &number;

number_ptr = number;

number_ptr= &number;

*number_ptr= number;

CODE CODE
CODE

A SIMPLE POINTERS
EXAMPLE

A simple pointers example

pointers_simple.c

CODE CODE
CODE

ARRAYS AND POINTERS AND
FUNCTIONS - LET'S BRING IT
ALL TOGETHER...

Let's see and use some pointers. Now remember that

you can only return one thing back to main and you

can't return an array*

The problem is this:

So without using pointers, can you have a swapping

function that swaps out two things? How would you

return both of those things back to the main?

Read in an array of numbers (user will specify how many

numbers they plan to read in). Then the first number and

the last number in the array will be swapped, and the

modified array printed out again.
shufflin.c

Feedback please!
I value your feedback and use to pace the lectures and improve your overall

learning experience. If you have any feedback from today's lecture, please

follow the link below. Please remember to keep your feedback constructive,

so I can action it and improve the learning experience.

https://www.menti.com/al86y6y82aex

STRINGS
RECAP

compare_numbers.c

compare_strings.c

COMMAN LINE
ARGUMENTS

RECAP
shufflin.c

POINTERS

WHAT DID WE LEARN TODAY?

RE
A

C
H

 O
U

T

cs1511@unsw.edu.au

ADMIN QUESTIONS

Check out the forum

CONTENT RELATED
QUESTIONS

