
COMP1511 PROGRAMMING FUNDAMENTALS

LECTURE 8
Recap 2D arrays and Strings

O
N

 M
O

N
D

A
Y

..
.

LAST LECTURE...

Went back to reinforce 1D arrays

Looked at 2D arrays (which make up

a grid and allow us to do some pretty

cool stuff)

TH
IS

 L
EC

TU
RE

..
.

TODAY

Revisiting scanf() and EOF

Recap of 2D arrays

Strings!

Command line arguments if there is

time

WHERE IS THE CODE?

Live lecture code can be found here:
HTTPS://CGI.CSE.UNSW.EDU.AU/~CS1511/23T1/LIVE/WEEK04/

https://cgi.cse.unsw.edu.au/~cs1511/21T3/live/

ARRAY OF
ARRAYS

A RECAP
col 2 col 3col 1

row 0

row 1

row 2

col 0

int array[3][4];

array[0][0] array[0][1] array[0][2] array[0][3]

array[1][0] array[1][1] array[1][2] array[1][3]

array[2][0] array[2][1] array[2][2] array[2][3]

For example, let's say we declare an array of arrays:

Visually it looks like this and showing how to access

each of the grid elements:

PROBLEM
TIME

Going back to the question we finished with on

Monday, let's go back and move things out into

functions...
2D_arrays.c

PROBLEM
TIME

col 2col 1

row 0

row 1

row 2

col 0

array[0][0] array[0][1] array[0][2]

array[1][0] array[1][1] array[1][2]

array[2][0] array[2][1] array[2][2]

Write a program in C to find the sum of the right

diagonals of a 2D array of numbers. (Assume 2D array

will always be square)
diagonals.c

PROBLEM
TIME

col 2col 1

row 0

row 1

row 2

col 0

array[0][0] array[0][1] array[0][2]

array[1][0] array[1][1] array[1][2]

array[2][0] array[2][1] array[2][2]

Now a bit harder, what about the left diagonals?

diagonals.c

BR
EA

K
 T

IM
E

STRINGS

WHAT ARE THEY?

Strings are a collection of characters that are joined

together

an array of characters!

There is one very special thing about strings in C - it is

an array of characters that finishes with a

This symbol is called a null terminating character

It is always located at the end of an array, therefore

an array has to always be able to accomodate this

character

It is not displayed as part of the string

It is a placeholder to indicate that this array of

characters is a string

It is very useful to know when our string has come to

an end, when we loop through the array of characters

HOW DO
WE
DECLARE A
STRING?

WHAT DOES IT LOOK
LIKE VISUALLY?

Because strings are an array of characters, the array

type is char.

To declare and initialise a string, you can use two

methods:

 //the more convenient way
char word[] = "hello";
//this is the same as'\0':
char word[] = {'h','e','l','l','o','\0'};

0 1 2 3 4 5

char char char char char char

\0eh l l 0

array[] - the array that the string will be stored into

length - the number of characters that will be read in

stream - this is where this string is coming from - you

don't have to worry about this one, in your case, it will

always be stdin (the input will always be from

terminal)

There is a useful function for reading strings:

The function needs three inputs:

HELPFUL
LIBRARY
FUNCTIONS
FOR
STRINGS
FGETS()

fgets(array[], length, stream)

// Declare an array where you will place the
string that you read from somewhere
char array[MAX_LENGTH];
// Read in the string into array of length
MAX_LENGTH from terminal input
fgets(array, MAX_LENGTH, sdin)

HOW DO I
KEEP
READING
STUFF IN
OVER AND
OVER
AGAIN?

 fgets() stops reading when either length-1 characters

are read, newline character is read or an end of file is

reached, whichever comes first

Using the keyword, you can continuously get string

input from terminal until Ctrl+D is pressed

NULL

array[] - the array that the string is be stored in

stream - this is where this string will be output to, you

don't have to worry about this one, in your case, it will

always be stdout (the output will always be in

terminal)

Another useful function to output strings:

The function needs two inputs:

HELPFUL
LIBRARY
FUNCTIONS
FOR
STRINGS
FPUTS()

fputs(array[], stream)

// Declare an array where you will place the
string that you read from somewhere
char array[MAX_LENGTH];
// Read in the string into array of length
MAX_LENGTH from terminal input
fgets(array, MAX_LENGTH, sdin)
//Output the array now
fputs(array, stdout)

 gives us the length of the string (excluding

the '\0'

 copy the contents of one string to another

 attach one string to the end of another

(concatenate)

 compare two strings

 find the first or last occurance of a

character

Some other useful functions for strings:SOME OTHER
INTERESTING
STRING
FUNCTIONS

<STRING.H>
STANDARD LIBRARY

CHECK OUT THE REST OF THE FUNCTIONS:
HTTPS://WWW.TUTORIALSPOINT.COM/
C_STANDARD_LIBRARY/STRING_H.HTM

strcpy()

strlen()

strcat()

strchr()

strcmp()

USING
SOME OF
THESE
FUNCTIONS

STRINGS

COMMAND
LINE
ARGUMENTS

WHAT ARE THEY?

So far, we have only given input to our program after

we have started running that program (using scanf())

This means our function has

always been void as input

Command line arguments allow us to give inputs to our

program at the time that we start running it! So for

example:

int main(void) {}

TIME TO
CHANGE
THAT VOID

LET'S GET OUR
MAIN FUNCTION
TO ACCEPT SOME
INPUT
PARAMETERS

In order to change your main function to accept

command line arguments on first running, you need to

change the void input:

int argc = is a counter for how many command line

arguments you have (including the program name)

char *argv[] = is an array of the different command

line arguments (separated by a spaces). Each

command line argument is a string (an array of char)

int main(int argc, char *argv[]) {}

AN
EXAMPLE

WHAT IF
YOU WANT
NUMBERS
AND NOT
STRINGS?

REMEMBER THAT
EACH COMMAND
LINE ARGUMENT
IS A STRING

You want numbers, if you want to use your command

line arguments to perform calculations

There is a useful function that converts your strings

to numbers:

 in the standard library: <stdlib.h> atoi()

WHAT IF
YOU WANT
NUMBERS
AND NOT
STRINGS?

REMEMBER THAT
EACH COMMAND
LINE ARGUMENT
IS A STRING

CODE TIME
:)

Read in two numbers from the command line

arguments and state whether the two numbers are

the same or not

Let's make it a bit more interesting, read in two

strings from the command line arguments and

compare the strings to say whether they are the same

or not!

compare_numbers.c

compare_strings.c

Feedback please!
I value your feedback and use to pace the lectures and improve your overall

learning experience. If you have any feedback from today's lecture, please

follow the link below. Please remember to keep your feedback constructive,

so I can action it and improve the learning experience.

https://www.menti.com/alafjm9rxpmy

WHAT DID WE LEARN TODAY?

2D_array.c

diagonals.c

2D ARRAY
RECAP

echo.c

string.c

STRINGS

argv_demo.c

atoi_demo.c

compare_numbers.c

compare_strings.c

COMMAND
LINE

ARGUMENTS

RE
A

C
H

 O
U

T

cs1511@unsw.edu.au

ADMIN QUESTIONS

Check out the forum

CONTENT RELATED
QUESTIONS

