
COMP1511 PROGRAMMING FUNDAMENTALS

LECTURE 7
An array of arrays, 2D

LA
ST

 W
EE

K
..

.
IN WEEK 3...

Talked about the importance of style

- work neatly as you go!

Discovered functions (separate

chunks of code for reuse, help to

segment the problem)

Got introduced to arrays -

homogenous collections - stores the

same type of variable in a collection

TH
IS

 L
EC

TU
RE

..
.

TODAY...

Recap basic arrays

Array of structs

Array of arrays

WHERE IS THE CODE?

Live lecture code can be found here:
HTTPS://CGI.CSE.UNSW.EDU.AU/~CS1511/23T1/LIVE/WEEK04/

https://cgi.cse.unsw.edu.au/~cs1511/21T3/live/

Assignment 1 will be released after this

lecture

CS Defence - based on tower defence games

Aims of the assignment

Apply arrays and two-dimensional arrays

in solving problems

Apply good style to your code

Apply the use of functions in code

Practice skills in debugging code, and

skills in patience as you search for one

missing semi-colon

ASSIGNMENT 1
RELEASED TODAY

The Assignment has 4 stages, each stage

ramps up with difficulty (just like the lab

exercises)

Suggest going through the stages

chronologically - do not skip stages

Live Stream to go through the assignment in

more detail:

Tuesday 7th March 2:00pm

In-person K17 Level 1 Room 113

(Seminar Room)

Live:

https://youtube.com/live/bAygNaTepa8?

feature=share

ASSIGNMENT 1
IN-PERSON AND
LIVESTREAM

are a collection all of the same type

are declared by using a type, name and a

size of the array

you can easily access individual elements of

an array by using an index

Indexing starts at 0 and moves through until

(size - 1) of the array

go hand in hand with while loops that make

it easy to work through an array

Remember that arrays:RECAP OF
ARRAYS

RECAP OF
ARRAYS

So let's say we have this declared and initialised:

This is what it looks like visually:

0 1 2 3 4 5 6

int int int int int int int

this array holds 7 integers
Note that indexing starts at 0

int ice_cream_consum[7] = {3, 2, 1, 2, 1, 3, 5};

3 2 1 2 1 3 5

RECAP OF
ARRAYS

2 3

int int

If I wanted the third element of the array
The index would be 2, so to access it:

ice_cream_consum[2]

1

You can access any element of the array by

referencing its index

Note, that indexes start from 0

Trying to access an index that does not exist, will

result in an error

0 1 4 5 6

int int int int int

int ice_cream_consum[7] = {3, 2, 1, 2, 1, 3, 5};

3 2 1 2 3 5

RECAP OF
ARRAYS

AN EXAMPLE
PROBLEM

Problem: A user is asked to enter 10 numbers. We will

then go through these numbers and find the lowest

number and output what the lowest number is to the

user.

lowest_number.c

Problem: A user is asked to enter 10 numbers. We will

then go through these numbers and find the sum of

the even numbers only.

sum_even.c

BR
EA

K
 T

IM
E

TIME TO STRETCH
There are five bags of gold that all look identical, and each has ten

gold pieces in it. One of the five bags has fake gold in it. The real gold,

fake gold, and all five bags are identical in every way, except the

pieces of fake gold each weigh 1.1 grams, and the real gold pieces

each weigh 1 gram. You have a perfectly accurate digital gram scale

and can use it only once. How do you determine which bag has the

fake gold?

YOU CAN
HAVE AN
ARRAY OF
ANYTHING

AN ARRAY OF
STRUCTS

The struct for a coordinate point:

An array of structs declared:

An array of structs visually:

2 30 1 4

struct struct

struct coordinate map[5];

3

struct coordinate {
 int x;
 int y;
};

struct structstruct

1

map[0].x = 3;
map[0].y = 1;

col 2

2

2

ACCESSING
AN ELEMENT
INSIDE ARRAY
OF ARRAYS

An array of arrays is basically a grid. To declare an

array of arrays:

To access an element now you will need to:

col 3col 1 col 4

int array[3][5];

13 2 1 2

13 1 2

13 1 2

row 0

row 1

row 2
col

col 0

type array_name[num of rows][num of columns];

array[2][3];

ARRAY OF
ARRAYS

Think of the problem last week where we tracked ice-

cream consumption for a week. What if I want to do

this for a month (a week at a time)?

col

int ice_cream[4][7];

col 2 col 3col 1 col 4

row 0

row 1

row 2

col 0 col 5 col 6

row 3

REMEMBER A
WHILE LOOP
INSIDE A
WHILE LOOP
TO PRINT A
GRID?

col

int row = 0;
while (row <= SIZE){
 int col = 0;
 while (col <= SIZE){
 printf("%d", col);
 col++;
 }
printf("\n");
row++;
}

Do you remember when we printed out a grid of

numbers in Week 2 with our while inside a while?

How can we transfer this knowledge to print out an

array of arrays?

TRANSFER
THIS TO AN
ARRAY:

FIRST RUN AROUND
THE SUN:
OUTSIDE WHILE
 ROW = 0
INSIDE WHILE
 COL = 0

col

col 2 col 3col 1

row 0

row 1

row 2

col 0

int array[3][4];
int row = 0;
while (row <= 3){
 int col = 0;
 while (col <= 4){
 printf("%d", array[row][col]);
 col++;
 }
printf("\n");
row++;
}

X

TRANSFER
THIS TO AN
ARRAY:

FIRST RUN AROUND
THE SUN:
OUTSIDE WHILE
 ROW = 0
INSIDE WHILE
 COL = 1

col

col 2 col 3col 1

row 0

row 1

row 2

col 0

int array[3][4];
int row = 0;
while (row <= 3){
 int col = 0;
 while (col <= 4){
 printf("%d", array[row][col]);
 col++;
 }
printf("\n");
row++;
}

X

TRANSFER
THIS TO AN
ARRAY:

FIRST RUN AROUND
THE SUN:
OUTSIDE WHILE
 ROW = 0
INSIDE WHILE
 COL = 2

col

col 2 col 3col 1

row 0

row 1

row 2

col 0

int array[3][4];
int row = 0;
while (row <= 3){
 int col = 0;
 while (col <= 4){
 printf("%d", array[row][col]);
 col++;
 }
printf("\n");
row++;
}

X

TRANSFER
THIS TO AN
ARRAY:

FIRST RUN AROUND
THE SUN:
OUTSIDE WHILE
 ROW = 0
INSIDE WHILE
 COL = 3

col

col 2 col 3col 1

row 0

row 1

row 2

col 0

int array[3][4];
int row = 0;
while (row <= 3){
 int col = 0;
 while (col <= 4){
 printf("%d", array[row][col]);
 col++;
 }
printf("\n");
row++;
}

X

TRANSFER
THIS TO AN
ARRAY:

SECOND RUN
AROUND THE SUN:
OUTSIDE WHILE
 ROW = 1
INSIDE WHILE
 COL = 0

col

col 2 col 3col 1

row 0

row 1

row 2

col 0

int array[3][4];
int row = 0;
while (row <= 3){
 int col = 0;
 while (col <= 4){
 printf("%d", array[row][col]);
 col++;
 }
printf("\n");
row++;
}

X

TRANSFER
THIS TO AN
ARRAY:

SECOND RUN
AROUND THE SUN:
OUTSIDE WHILE
 ROW = 1
INSIDE WHILE
 COL = 1

col

col 2 col 3col 1

row 0

row 1

row 2

col 0

int array[3][4];
int row = 0;
while (row <= 3){
 int col = 0;
 while (col <= 4){
 printf("%d", array[row][col]);
 col++;
 }
printf("\n");
row++;
}

X

TRANSFER
THIS TO AN
ARRAY:

SECOND RUN
AROUND THE SUN:
OUTSIDE WHILE
 ROW = 1
INSIDE WHILE
 COL = 2

col

col 2 col 3col 1

row 0

row 1

row 2

col 0

int array[3][4];
int row = 0;
while (row <= 3){
 int col = 0;
 while (col <= 4){
 printf("%d", array[row][col]);
 col++;
 }
printf("\n");
row++;
}

X

TRANSFER
THIS TO AN
ARRAY:

SECOND RUN
AROUND THE SUN:
OUTSIDE WHILE
 ROW = 1
INSIDE WHILE
 COL = 3

col

col 2 col 3col 1

row 0

row 1

row 2

col 0

int array[3][4];
int row = 0;
while (row <= 3){
 int col = 0;
 while (col <= 4){
 printf("%d", array[row][col]);
 col++;
 }
printf("\n");
row++;
}

X

TRANSFER
THIS TO AN
ARRAY:

THIRD RUN AROUND
THE SUN:
OUTSIDE WHILE
 ROW = 2
INSIDE WHILE
 COL = 0

col

col 2 col 3col 1

row 0

row 1

row 2

col 0

int array[3][4];
int row = 0;
while (row <= 3){
 int col = 0;
 while (col <= 4){
 printf("%d", array[row][col]);
 col++;
 }
printf("\n");
row++;
}

X

TRANSFER
THIS TO AN
ARRAY:

THIRD RUN AROUND
THE SUN:
OUTSIDE WHILE
 ROW = 2
INSIDE WHILE
 COL = 1

col

col 2 col 3col 1

row 0

row 1

row 2

col 0

int array[3][4];
int row = 0;
while (row <= 3){
 int col = 0;
 while (col <= 4){
 printf("%d", array[row][col]);
 col++;
 }
printf("\n");
row++;
}

X

TRANSFER
THIS TO AN
ARRAY:

THIRD RUN AROUND
THE SUN:
OUTSIDE WHILE
 ROW = 2
INSIDE WHILE
 COL = 2

col

col 2 col 3col 1

row 0

row 1

row 2

col 0

int array[3][4];
int row = 0;
while (row <= 3){
 int col = 0;
 while (col <= 4){
 printf("%d", array[row][col]);
 col++;
 }
printf("\n");
row++;
}

X

TRANSFER
THIS TO AN
ARRAY:

THIRD RUN AROUND
THE SUN:
OUTSIDE WHILE
 ROW = 2
INSIDE WHILE
 COL = 3

col

col 2 col 3col 1

row 0

row 1

row 2

col 0

int array[3][4];
int row = 0;
while (row <= 3){
 int col = 0;
 while (col <= 4){
 printf("%d", array[row][col]);
 col++;
 }
printf("\n");
row++;
}

X

PROBLEM
TIME

col

Let's try our hand at using a 2D array to solve a

problem!

Declare and create a 3 x 3 two-dimensional array

of integer numbers with the numbers read in

from the user. Then loop through the two-

dimensional array, printing out the values in the

first row followed by those in the second row and

so on.

Now loop through the array to count the

number of even numbers in the 2D array

2D_Arrays.c

Feedback please!
I value your feedback and use to pace the lectures and improve your overall

learning experience. If you have any feedback from today's lecture, please

follow the link below. Please remember to keep your feedback constructive,

so I can action it and improve the learning experience.

https://www.menti.com/albo2hw32oxo

LIVESTREAM on

Tuesday 2:00pm

In-person:

K17, Room 113

Seminar

ASSIGNMENT 1
IS RELEASED

lowest_number.c

sum_even.c

array of structs:

dogs.c

RECAP 1D
ARRAYS

2D_array.c

AN ARRAY OR
ARRAYS (2D)

WHAT DID WE LEARN TODAY?

RE
A

C
H

 O
U

T

cs1511@unsw.edu.au

ADMIN QUESTIONS

Check out the forum

CONTENT RELATED
QUESTIONS

