
COMP1511 PROGRAMMING FUNDAMENTALS 

LECTURE 3
Control Flow

Getting harder...

IF Statements
Loop de loop



LA
ST

 W
EE

K
..

. 
LAST WEEK, WE TALKED:

Welcome and Introductions

Started looking at C

Our first Hello! program

Compiling and running your code

                  and 

Variables (      ,             ,         )

Maths :) 

int chardouble

printf() scanf()



IN
 T

H
IS

 L
EC

TU
RE

..
.

TODAY...

IF statements

Logical Operators

Chaining       and 

Loop, loop, loop, loop, loop

While

if else



Live lecture code can be found here: 
HTTPS://CGI.CSE.UNSW.EDU.AU/~CS1511/23T1/LIVE/WEEK02/

WHERE IS THE CODE?

https://cgi.cse.unsw.edu.au/~cs1511/21T3/live/


Let's have a quick rehash of what we learnt

last week :) 
REHASH
OUR
INPUT/OUTP
UT

QUICK REHASH!



Sometimes we want to make decisions based

on what information we have at the time

We can let our program branch between sets

of instructions

In C this is the        statement

DECISION
TIME...
ASKING THE
COMPUTER
TO MAKE A
DECISION...

IF STATEMENTS

if



A decision problem is a question with a

YES/NO answer

This is the perfect time to use an IF statement

to help make the decision

Eg. Is a number even? Is a number larger than

10? Is a number prime? etc.

WHAT KINDS
OF
PROBLEMS
DO WE
SOLVE WITH
IF?
 
DECISION PROBLEMS
(YES/NO)



First we ask the question - this is our

condition

If the answer to our question (condition) is

YES, then we run the code in the curly

brackets

IF
STATEMENT
 
IT IS LIKE A
QUESTION AND AN
ANSWER



If the answer to our question (condition) is NO,

then we can add an else statement to let the

computer know which other code may run

WHAT IF THE
ANSWER IS
NO?
 
THERE ARE OPTIONS,
THERE ARE ALWAYS
OPTIONS 



If the answer to our question (condition) is NO,

and the answer to our question (condition) in

the else is also NO, then we can chain some if

and else together to make an else if and

create even more options in choosing which

code to run...

WHAT IF THE
ANSWER IS
NO...
AGAIN?
 
MORE OPTIONS



Relational Operators work with pairs of

numbers:

 < less than

 > greater than

 <= less than or equal to

 >= greater than or equal to

 == equals 

 != not equal to

All of these will result in 0 if false and a 1 if

true

HOW DO WE
ASK GOOD
QUESTIONS?  
RELATIONAL
OPERATORS

NOTICE: IN C, WE HAVE == AND = 

THESE ARE NOT THE SAME AND DO
NOT MEAN WHAT YOU ARE USED TO
IN MATHS!

USING = WHEN YOU ASSIGN
VALUES
USING == WHEN YOU ARE
CHECKING FOR EQUIVALENCE 



       AND: if both expressions are true then the

condition is TRUE (equates to 1 if both sides

equate to 1)

       OR: if any of the two expressions are true

then the condition is TRUE (is 1 if either side is

1)

       NOT: reverse the expression (is the

opposite of whatever the expression was)

The first two are used between two questions

(expressions):

This is used in front of an expression:

I LIKE
QUESTIONS,
HOW DO I
ASK TWO
QUESTIONS
AT THE
SAME TIME?
LOGICAL
OPERATORS

&&

||

!



True (1) or False (0)?

Let's do a quick "Kahoot!" 
SOME
EXAMPLES
LET'S TRY THIS
OUT... 



IF / 
ELSE IF / 
ELSE 
LET'S LOOK AT SOME
CODE AND A DEMO

IF statements with logical operators:

IF statements with char: 

Harder IF logic and chaining if and else together: 

 

 

if_logic.c

lower.c

energy_guessing_game.c



We have decided to run a competition to see how

many free energy drinks were given out at O-Week.

Students that guess the right number of drinks

given out win! You get given three guesses, but

you get told whether your guess was less then,

more than or the winning guess :)  

Extend the problem - if you are within 5 of the

correct number, you win the guessing game...

LET'S PUT
OUR SKILLS
TO THE TEST

LET'S CODE! (SOLVE
THE PROBLEM FIRST)



A user will guess how many free energy drinks

were given out at O-Week - how do we read

input? 

Check this input against a target number

(plus/minus 5) - based on this we need to

make a decision - therefore IF statement

Output if the guess higher, equal or lower than

the target number - output based on the

decision that we made

1.

2.

3.

BREAKING DOWN
THE PROBLEM INTO
A SUM OF SIMPLE
PARTS

We have decided to run a competition to

see how many free energy drinks were

given out at O-Week. Students that guess

the right number of drinks given out win!

You get given three guesses, but you get

told whether your guess was less then,

more than or the winning guess :) 

Extend the problem - if you are within 5 of

the correct number, you win the guessing

game...



Take in the guess - how do we read input?

Read input with scanf()

Check the guess against a target number - it looks like we

need to make a decision - therefore IF statement

 Define the target number

Output if total of the dice was higher, equal or lower than

the target number. - output based on the decision that we

made

 Is sum greater than target number?

 Is sum less than target number?

 Is sum equal to the target number?

1.

a.

2.

3.

BREAKING DOWN
THE PROBLEM INTO
A SUM OF SIMPLE
PARTS

We have decided to run a competition to

see how many free energy drinks were

given out at O-Week. Students that

guess the right number of drinks given

out win! You get given three guesses, but

you get told whether your guess was less

then, more than or the winning guess :) 

Extend the problem - if you are within 5

of the correct number, you win the

guessing game...



BREAKING
THINGS

Try and counter for these breaks! 

Important to have good error messages:

Tells the user exactly what has gone wrong

How can they fix it?

What is happening!? 

It is really good practice to think about how it is

possible to break your code? What can go wrong?



LET'S TRY IT
WITH SCANF()

Gives us the ability to scan stuff in from the

terminal (standard input)

We have to tell the computer what we expect to

scanf() - is it an int, a char, or a double?

But since scanf() is a function does it return

something?

Yes, scanf() returns the number of input

values that are scanned

If there is some input failure or error then it

returns EOF (end-of-file) - we will look at

this more later on! 

This can be useful to check for any errors 



BR
EA

K
 T

IM
E



Any time your program needs to keep doing

something (repeating the same or similar

action) until something happens and you may

not know how many times that will be in

advance

Can you think of some examples in real life? 

 While there are songs in my playlist, keep

playing the songs

WHEN DO
WE NEED
TO LOOP?

REPETITION



C normally executes in order, line by line

(starting with the main function after any #

commands have been executed)

if statements allow us to “turn on or off”

parts of our code

But up until now, we don’t have a way to

repeat code

Copy-pasting the same code again and again is

not a feasible solution

Let's see an example where it is inefficient to

copy and paste code... 

WHILE

REPETITIVE TASKS
SHOULDN’T
REQUIRE
REPETITIVE
CODING



                loops - can commonly be controlled 

 in three ways:

Count loops

Sentinel loops

Conditional loops

WHILE

WHILE
SOMETHING IS
TRUE, DO
SOMETHING

while()



WHILE

CONTROL THE
WHILE LOOP



TO
INFINITY
AND
BEYOND 

TERMINATING
YOUR LOOP

It’s actually very easy to make a program that

goes forever

Consider the following while loop:



CONTROL
THE WHILE
LOOP

COUNT LOOPS

Use a variable to control how many times a

loop runs - a "loop counter"

It’s an          that’s declared outside the loop

It’s “termination condition” can be checked in

the while expression

It will be updated inside the loop

int



CONTROL
THE WHILE
LOOP

COUNT LOOPS



SENTINEL
VALUES

WHAT IS A
SENTINEL?

When we use a loop counter, we assume that

we know how many times we need to repeat

something

Consider a situation where you don’t know the

number of repetitions required, but you need

to repeat whilst there is valid data

A sentinel value is a ‘flag value’, it tells the loop

when it can stop… 

For example, keep scanning in numbers until an

odd number is encountered 

We do not know how many numbers we will

have to scan before this happens

We know that we can stop when we see an

odd number



CONTROL
THE WHILE
LOOP

SENTINEL LOOPS

Sentinel Loops: can also use a variable to

decide to exit a loop at any time

We call this variable a "sentinel"

It's like an on/off switch for the loop

It is declared and set outside the loop

Its “termination condition” can be checked in

the while expression

It will be updated inside the loop (often

attached to a decision statement)



CONTROL
THE WHILE
LOOP

SENTINEL LOOPS



CONTROL
THE WHILE
LOOP

CONDITIONAL
LOOPS

Conditional Loops: can also use a condition to

decide to exit a loop at any time

This is called conditional looping

Also do not know how many times we may

need to repeat. 

We will terminate as a result of some type of

calculation 



CONTROL
THE WHILE
LOOP

CONDITION
LOOPS



ACTION
TIME

CODE DEMO

While loop with a counter:

While loop with a sentinel:

While loop with a condition: 

while_count.c

while_sentinel.c

while_condition.c



Feedback Please
I value your feedback and use to pace the lectures and improve your overall

learning experience. If you have any feedback from today's lecture, please

follow the link below. Please remember to keep your feedback constructive,

so I can action it and improve the learning experience .

 

https://www.menti.com/al63hpzbstq2



WHAT DID WE LEARN TODAY?

lower.c

LOGICAL
OPERATORS
AND IF WITH

CHAR

energy_guessing_ga

me.c

CHAINING
IF/ELSE AND

ERROR
CHECKING

if /else /else if

Decision problems

Relational Operators

Logical Operators 

 

if_logic.c

 

CONDITIONS



while_sentinel.c

LOOP THE
LOOP
WHILE

(SENTINEL)
 

while_condition.c

LOOP THE
LOOP
WHILE

(CONDITION) 
 

WHAT DID WE LEARN TODAY?

while_counter.c

LOOP THE
LOOP
WHILE

(COUNTER) 
 

grid: grid.c

pyramid: pyramid.c

 

THURSDAY:
LOOP INSIDE A
LOOP (CAN'T
GET ENOUGH
OF A LOOP) 



RE
A

C
H

 O
U

T

cs1511@unsw.edu.au

ADMIN QUESTIONS

Check out the forum

CONTENT RELATED
QUESTIONS


