
COMP1511 PROGRAMMING FUNDAMENTALS

LECTURE 2
Variables and Constants - oh my!

LA
ST

 L
EC

TU
RE

..
.

ON MONDAY, WE TALKED:

Welcome and Introductions

Course Administration

How COMP1511 works

How to get help and the best ways to

approach learning Programming

What is programming?

What is Linux and working in Linux

IN
 T

H
IS

 L
EC

TU
RE

TODAY...

Variables and how we store

information

Constants

Maths in C!

WHERE IS THE CODE?

Live lecture code can be found here:
HTTPS://CGI.CSE.UNSW.EDU.AU/~CS1511/23T1/LIVE/WEEK01/

https://cgi.cse.unsw.edu.au/~cs1511/21T3/live/

A BRIEF
RECAP

OUR FIRST
PROGRAM

SOME
TERMS

PROCEDURE
VERSUS
FUNCTION

A procedure is a block of code that can be

called to perform a task

A function is a block of code that can be

called to perform a task and will return

one or more values to where it was called

from.

What does this mean?

SOME
TERMS

PROCEDURE
VERSUS
FUNCTION

Computer memory is literally a big pile of

on-off switches

We call these bits (smallest possible

unit in computing, a bit is a choice

between two things a 0 or a 1)

We often collect these together into

bunches of 8 bits

We call these bytes

HOW
DOES A
COMPUTER
REMEMBER
THINGS?

ONES AND
ZEROS!

When we execute

code, the CPU will

actually process the

instructions and

perform basic

arithmetic, but the

RAM will keep track of

all the data needed in

those instructions and

operations.

WHAT
DOES THIS
LOOK
LIKE?

heap

stack

global/static
variable

code

Low address

High address

Our way of asking the computer to

remember something for us

Called a "variable" because it can change

its value

A certain number of bits that we use to

represent something

Made with a specific purpose in mind

WHAT IS A
VARIABLE?

We’re going to start out with three data types

of variables:

 integer, a whole number (eg: 0,1,2,3)

 a single character (eg. ‘a’, ‘A’, etc)

 floating point number (eg: 3.14159,

8.534, 7.11)

Each of these has a different number of bytes

that are allocated in memory once the program

is run…

WHAT
KINDS OF
VARIABLES
WILL WE
LEARN
TODAY?

int

char

double

Names are a quick description of what the variable is

Eg: “answer” and “diameter”

Rather than “a” and “b”

We always use lower case letters to start our variable

names

C is case sensitive:

“ansWer” and “answer” are two different

variables

C also reserves some words

“return”, “int” and “double” can’t be used as

variable names

Multiple words

We can split words with underscores:

"long_answer"

NAMING
OUR
VARIABLES

IT IS AN ART -
CALL IT LIKE YOU
SEE IT, LIKE YOU
USE IT AND
SOMEONE ELSE
HAS TO SEE IT!

We name our variables in ways that make it

obvious what they are representing. Remember

someone else has to be able to skim your code

and know what you are saying/doing!

NAMING
OUR
VARIABLES

STYLE GUIDE

A whole number, with no fractions or

decimals

Most commonly uses 32 bits (which is also 4

bytes)

This gives us exactly 2 different possible

values

The maximum is very large, but it's not

infinite!

Exact ranges from -2147483648 (-2) to

2147483647 (2 - 1)

INTEGER
DATA TYPE int

32

31

31

A single character in C can also be

represented as an int!

This is because a single character variable

holds an ASCII value (integers 0-127), as

opposed to the character itself

The syntax to assign a single character is to

put the character in single quotes: ‘a’

So for a capital letter A:, the character is ‘A’

and the int stored is 65

You use a char to declare a character: char

letter = ‘a’ - this will assign 97 to the variable

letter

CHARACTER
DATA TYPE char

A double-sized floating point number

A decimal value - "floating point" means the

point can be anywhere in the number

Eg: 10.567 or 105.67 (the points are in

different places in the same digits)

It’s called "double" because it’s usually 64

bits, hence the double size of our integers

(or 8 bytes)

DOUBLE
DATA TYPE double

LET'S TRY
SOME CODE
DECLARE AND
INITIALISE A
VARIABLE

Not just for specific messages we type in

advance

We can also print variables to our display!

To print out a variable value, we use format

specifiers

this is a % symbol followed by some

characters to let the compiler know

what data type you want to print..

 where the output you’d like to put an

int (decimal value, hence)

After the comma, you put the name of the

variable you want to write

PRINTING
OUT TO
TERMINAL
printf()

%d

%d

The variables will match the symbols in the same

order as they appear!

You can have as many as you want and of

different types also!

PRINT OUT
MANY
VARIABLES

WHY NOT?

The and are format specifiers that are

used in printf statement to let the compiler know

what data type we need to output.

 stands for “decimal integer”

 stands for “long floating point number”

(a double)

Remember that we have to be very prescriptive

when we tell the computer what to do and that

extends to even telling it what types we are

printing in C

LET'S TRY
DIFFERENT
TYPES OF
NUMBERS

INTS AND DOUBLES
- OH MY!

%d %lf

%d

%lf

The format specifier can also be used in

printf statement to let the compiler know what

data type we need to output (character).

 stands for “character”

Don't forget that when you declare a char, you

enclose it in single apostrophes to let the

computer know that you are using a letter

character

WHAT
ABOUT
CHAR?

CAN'T FORGET THE
LONELY CHAR

%c

%c

BR
EA

K
 T

IM
E

TIME TO STRETCH
There has just been a heavy fall of snow, Baudouim goes

outside and finds that there is twice as much snow in

his garden as in his neighbour Gael's garden. He does

not, however, appear surprised. Why not?

Reads input from the user in the same format as

printf

Format specifiers (, ,) are used in the

same way as for the printf statement

The symbol tells scanf the address of the variable

in memory (where the variable is located) that we

want to place the value into (more details later in

term)

GREAT, WE
CAN PRINT
TO
TERMINAL,
CAN WE TAKE
SOMETHING
FROM
TERMINAL?

%c%d

scanf()

%lf

&

If you want scanf to read in a character, you

will need to declare a character by using the

keyword:

Even though you have declared a char to store

your character into, it is still stored as an ASCII

value… so you can move between and

 when you printf this variable

WHAT ABOUT
OUR LONELY
CHAR?

%c%d
scanf()

char

Constants are like variables, only they never

change!

To define a constant, we use and follow

it with the name of the constant and the value

Style Guide: We name them in all caps so that we remember that

they’re not variables!

WHAT IF A
VARIABLE
NEVER
CHANGES?

THEN IT IS MOST
LIKELY A
CONSTANT...

#define

HOW DOES
SCANF()
REALLY
WORK?
A MAGICAL
POWER...

Gives us the ability to scan stuff in from the

terminal (standard input)

We have to tell the computer what we expect to

scanf() - is it an , , or ?

But since scanf() is a function does it return

something?

Yes, scanf() returns the number of input values

that are scanned

If there is some input failure or error then it

returns EOF (end-of-file) - we will look at this

more later on!

This can be useful to check for any errors

int double char

You may have noticed that:

is able to ignore anything other than a number when

it scans in - this is because whitespace is not a

number and the function looks for a number

But did you notice that this is not the case for

This is because a new line (/n) is a character on the

ASCII table, which means it is still a valid character

to scan in (It is number 10 LF if you are interested!)

To fix this, we can tell scanf() to ignore all

preceeding whitespace by using a special magic trick:

DID YOU
NOTICE HOW
A NEW LINE
IS READ BY
SCANF()?
BECAUSE /N IS A
CHARACTER ON THE
ASCII TABLE: 10 LF
(LINE FEED)

scanf("%c", &character);

scanf(" %c", &character);

scanf("%d", &number);

A lot of arithmetic operations will look very familiar

in C

adding +

subtracting -

multiplying *

dividing /

These will happen in their normal mathematical

order

We can also use brackets to force precedence

LET'S TALK
ABOUT
MATHS
WE LOVE MATHS,
RIGHT? C ALSO
LOVES MATHS
(SOMETIMES WITH
QUIRKS).

Because characters are represented as ints

inside the variable, you are able to move

around the ASCII values by adding or

subtracting to them.

For example, if you are at ‘a’ and you want to

get to ‘b’, you can add 1

SUPER FUN
FACT, YOU
CAN DO
MATHS
WITH CHAR
BECAUSE
THEY ARE
JUST INTS!

Check out Boeing 787 that had to be rebooted

every 248 days (2 -hundredths of a seconds)

https://www.engadget.com/2015-05-01-

boeing-787-dreamliner-software-bug.html

THE QUIRKS
OF
INTEGERS...

INTEGER
OVERFLOW/
INTEGER
UNDERFLOW

31

https://www.theguardian.com/business/2015/may/01/us-
aviation-authority-boeing-787-dreamliner-bug-could-cause-

loss-of-control

https://www.engadget.com/2015-05-01-boeing-787-dreamliner-software-bug.html

If we add two large ints together, we might go

over the maximum value, which will actually roll

around to the minimum value and possibly end

up negative (Check out Ariane 5 explosion), a

simple error like this caused a rather large

problem:

https://www.bbc.com/future/article/20150505

-the-numbers-that-lead-to-disaster)

THE QUIRKS
OF
INTEGERS...

INTEGER
OVERFLOW/
INTEGER
UNDERFLOW

In a less destructive example, the video

Gangham Style on YouTube maxed out the

views counter :

https://www.bbc.com/news/world-asia-

30288542

THE QUIRKS
OF
INTEGERS...

INTEGER
OVERFLOW/
INTEGER
UNDERFLOW

Ints are not always 32-bits! THE QUIRKS
OF
INTEGERS...

INTEGER
OVERFLOW/
INTEGER
UNDERFLOW

No such thing as infinite precision

We can’t precisely encode a simple number like

⅓

If we divide 1.0 by 3.0, we'll get an

approximation of ⅓

The effect of approximation can compound the

more you use them

THE QUIRKS
OF
DOUBLES...

OFFENDING
REPEATERS

Remember that C thinks in data types

If either numbers in the division are

doubles, the result will be a double

If both numbers are ints, the result will be

an int, for example, 3/2 will not return 1.5,

because ints are only whole numbers

ints will always drop whatever fraction

exists, they won’t round nicely, so 5/3 will

result in 1

% is called Modulus. It will give us the

remainder from a division between integers,

eg. 5 % 3 = 2 (because 5/3 = 1 rem 2)

NOW A
LITTLE BIT
ABOUT
DIVISION

IT IS INTERESTING IN
C...

Feedback please!
I value your feedback and use to pace the lectures and improve your overall

learning experience. If you have any feedback from today's lecture, please

follow the link below. Please remember to keep your feedback constructive,

so I can action it and improve the learning experience.

https://www.menti.com/alv2bis12btq

WHAT DID WE LEARN TODAY?

Hello World!

our first program

RECAP

They come in different

shapes and sizes - int,

double and char

Printing from variables

(printf)

Reading user input into

variables (scanf)

Using maths with variables

VARIABLES

RE
A

C
H

 O
U

T Check out the forum

CONTENT RELATED
QUESTIONS

cs1511@unsw.edu.au

ADMIN QUESTIONS

