COMP1511 PROGRAMMING FUNDAMENTALS

LECTURE 1

Let’s get to know each other
Welcome and Introductions
Course Administration
How COMP1511 works
How to get help and the best ways to approach learning Programming
What is programming?
What is Linux and working in Linux
A first look at C
SOME THINGS I WORK ON

- Splashkit: A graphics designed for learning programming (https://splashkit.io/)
- Formatif learning and feedback system
- Systems for analysing stochastic systems
THE ADMIN TEAM

TOM KUNC
Has a script for everything

SHREY SOMAIYA
Always awake

BEN BRIANT
Forum king

TAMMY ZHONG
Always happy, sometimes forgetful, likes pink
All course information can be found HERE (not Moodle!)
https://cgi.cse.unsw.edu.au/~cs1511/22T2/
ADMIN RELATED ISSUES:
Email the course email for all admin related enquiries:
cs1511@cse.unsw.edu.au

FOR ANY ENROLMENT ISSUES:
UNSW Nucleus Student Hub
https://nucleus.unsw.edu.au/en/contact-us

ELP PLANS
If you have an ELP plan in place, please email me directly on jake.renzella@unsw.edu.au
COMMUNICATION

FORUM
Post all your questions here and feel free to answer other's questions. Please ensure you use zid@unsw.edu.au!
https://edstem.org/au/courses/8666/discussion/

ASK QUESTIONS IN TUT/LABS

HELP SESSIONS
Schedule will be announced shortly
Link to our Hale FastPass system will be provided shortly

Good place to get help outside of normal lab/tutorial times

COURSE CONTENT RELATED
SO WHAT IS COMP1511?

- It is your intro to programming
- This is where the journey starts :)

- Computers can only follow instructions that we give them to solve problems
- Writing a program is providing the computer with a set of instructions
- Problem solving is a very important skill, can only be built up with practice!
We assume no prior knowledge & zero previous programming experience

We teach you the fundamentals of programming, how to approach and solve problems, and how to talk to computers in a common language
LECTURES
TWO HOUR SESSION TWICE A WEEK

- Streamed online via YouTube Live (recordings will be available)
 - Tuesday 9am-11am (AEDT)
 - Wednesday 3pm-5pm (AEDT)
- Week 6 is Flex Week, so no formal lectures but we may have bonus content
- If you have a question, feel free to ask in live chat,
- Please be respectful of others at all times - everyone is here to learn.
• Theory - What are we trying to understand?
• Demonstrations - Some live coding to show you how some things work
• Problem Solving - How do we decide what to code?
• Other stuff - Outside of programming, what’s important?
• Lecture slides (and other materials) are available from the Course Website https://cgi.cse.unsw.edu.au/COMP1511/22T1/
• Lecture recordings will be in the YouTube playlist and linked via the Course Website
• Go further in depth into the topics we're teaching
• Actual practical working of tasks and problems we've given you
• Learning how to solve problems before you write the code!
"Tutorials are a good place for interactive learning. You’ll have time to discuss and work through problems there."

- Online and face-to-face: please check your timetable for your enrolment details
 - For online classes, use Teams
 - Please turn on your cameras if you can
 - We love seeing pets make an appearance
Practical coding including working in small groups
Time to have one on one conversations with your tutors
Problem sets will be marked automatically and count towards your final marks (15% total over the term)
There are challenge exercises for earning bonus marks (not necessary and some are hard enough that they'll eat up a lot of time)
Tutorials and Labs do NOT run in Week 6
ASSIGNMENTS
LARGER SCALE PROJECTS

"Start the assignments early, so that you have time to chip away and get help as needed."

- Individual work
- These will take you a few weeks and will test how well you can apply the theory you’ve learnt
- There are three Assignments due:
 - Assignment 0 - 5% (Monday 8pm Week 4)
 - Assignment 1 - 15% (Monday 8pm Week 7)
 - Assignment 2 - 25% (Friday 8pm Week 10)
- Late penalties of 1% per hour apply (this reduces your maximum possible mark)
HELP SESSIONS
OPTIONAL SESSIONS SCHEDULED DURING THE WEEK

”A great place to ask questions and get help to fill any gaps.”

- Held using Teams (you will be added)
- Some one on one consultation with tutors
- Time for you to ask individual questions or get help with specific problems
- Schedule will be up on the Course Website soon
- These are particularly busy around Assignment deadlines
- Hale - a FastPass Booking System to register for a ticket to attend a help session
Expected workload of around 3-5 hours total
You’ll be given a series of problems to solve in C
You will also be expected to read some C and show you understand it
There will also be some questions covering programming ideas

Exam Hurdles
Parts of the exam are competency hurdles
These questions must be answered correctly to pass the course
Labs = 15%
Assignment 0 = 5%
Assignment 1 = 15%
Assignment 2 = 25%
Final Exam = 40%

To pass the course you must:
- Score at least 50/100 overall
- Solve problems using arrays in the final exam
- Solve problems using linked lists in the final exam
Special Consideration:
- Support for any issues that make it difficult for you to study
- https://student.unsw.edu.au/special-consideration
- You can apply now if you have existing reasons (or later if something comes up)

If you have an ELP plan, please email it directly to me:
jake.renzella@unsw.edu.au
A Supplementary exam can be offered to students granted Special Consideration for the exam

- Fit-to-Sit rule
- Identical in format to the main exam
This course and this University allows all students to learn, regardless of background or situation. Remember the one rule... you will not hinder anyone else's learning!

Anything connected to COMP1511, including social media, will follow respectful behaviour:

- No discrimination of any kind
- No inappropriate behaviour
 - No harassment, bullying, aggression or sexual harassment
- Full respect for the privacy of others
Plagiarism is the presentation of someone else's work or ideas as if they were your own.

Any kind of cheating on your work for this course will incur penalties (see the course outline for details)

Collaboration on individual assessments like Assignments is considered plagiarism.

"If you don't spend the time to learn and practice the content, the only person who loses is you."
The internet has a lot of resources you should learn to use, just make sure you credit your sources.

No collaboration at all on individual assignments

Your submissions are entirely your own work

Don't use other people's code

Don't ask someone else to solve problems for you (even verbally)

Don't provide your code to other people

“Discussion of work and algorithms is fine (and encouraged).”
At best, you'll lose the marks for the particular assignment
At worst, you'll be asked to leave UNSW
And even worse . . . you won't learn what you paid all this money and time to learn

COLLABORATION VS PLAGIARISM
• Course webpage
• Course forum
• Recorded Lectures (replay YouTube Streams or via Moodle)
• One on One
 ○ Ask your tutor during lab sessions
 ○ Help Sessions
• Serious Issues
 ○ Email: cs1511@cse.unsw.edu.au
 ○ The Nucleus: nucleus.unsw.edu.au
 ○ CSE Help Desk: http://www.cse.unsw.edu.au/~helpdesk/
Student Support | I Need Help With...

My Feelings and Mental Health
Managing Low Mood, Unusual Feelings & Depression

- Mental Health Connect: student.unsw.edu.au/counselling
 - Telehealth
- Mind HUB: student.unsw.edu.au/mind-hub
 - Online Self-Help Resources

Uni and Life Pressures
Stress, Financial, Visas, Accommodation & More

- Student Support
- Indigenous Student Support
 - student.unsw.edu.au/advisors
 - nura-gili-centre-indigenous-programs

Reporting Sexual Assault/Harassment

- Equity Diversity and Inclusion (EDI)
 - edl.unsw.edu.au/sexual-misconduct

Educational Adjustments
To Manage my Studies and Disability / Health Condition

- Equitable Learning Services (ELS)
 - student.unsw.edu.au/els

Academic and Study Skills

- Academic Skills
 - student.unsw.edu.au/skills

Special Consideration
Because Life Impacts our Studies and Exams

- Special Consideration
 - student.unsw.edu.au/special-consideration

In Australia Call Afterhours
UNSW Mental Health Support Line
- 1300 787 026
5pm-9am

Outside Australia Afterhours
24-hour Medibank Hotline
- +61 (2) 8905 0307
Suppose you have two buckets. One of these is 3L in capacity and the other one is a 5L bucket. How could you measure exactly 4L using only those buckets and as much extra water as you need?
WHAT IS A COMPUTER?
A TOOL . . . A MACHINE . . .
THE LOVE OF MY LIFE...

The ultimate tool in its ability to be reconfigured for different purposes.

The key elements:
• A processor to execute commands
• Memory to store information
WHAT IS PROGRAMMING?

- Providing a computer with specific instructions to solve various problems
 - Using specific languages to write those instructions (code)

- At the core of it - problem solving!
 - You may go through many iterations before you get it right
 - Mistakes are good!
WHAT IS AN OPERATING SYSTEM?

- An Operating System is the interface between the user and the computer hardware
- Operating Systems:
 - Execute user programs and make solving problems easier
 - Make the computer system convenient to use
- Basically, an Operating System sits between our code and the computer, providing essential services
WHAT IS LINUX?

- Linux is a Unix-based operating system:
 - Open source
 - More reliable
 - Lightweight
 - Faster, and
 - More secure
Terminal (command line driven) allow us to send simple text commands to our shell. It handles things like user input, displaying shell output.
• The shell, (bash, zsh) is a program that executes commands, and has its own syntax. It returns output which the terminal can display, or can launch other applications.
The prompt is controlled by the shell, and is the line of text which displays some information.
SOME IMPORTANT SHELL COMMANDS

- Lists all the files in the current directory:
 `ls`
- Makes a new directory called `directoryName`:
 `mkdir directoryName`
- Changes the current directory to `directoryName`:
 `cd directoryName`
- Moves up one level of directories (one folder level):
 `cd ..`
- Tells you where you are in the directory structure at the moment:
 `pwd`
File operations on the command line

- Copy a file from the source to the destination
 \[\texttt{cp \ source \ destination} \]
- Move a file from the source to the destination (can also be used to rename)
 \[\texttt{mv \ source \ destination} \]
- Remove a file (delete)
 \[\texttt{rm \ filename} \]

The `-r` tag can be added to `cp` or `rm` commands to recursively go through a directory and perform the command on all the files

\[\texttt{cp \ -r \ COMP1511 \ COMP1511_backup} \]

(will copy all files from my COMP1511 directory to my COMP1511_backup directory)
Our labs are running Linux with the basic tools necessary to get started.

You will definitely want to get your own computer ready to code with:

- VLAB allows you to remotely use CSE’s resources - instructions on setting this up available in the first laboratory.
- There are other more advanced options that we can help you with also - check the Home Computing site or the guides on our course website.
WHAT THE BASICS LOOK LIKE

For COMP1511 we need:

- A text editor (like gedit)
 - Helps out a little by highlighting C in different colours (after you run 1511 setup command in lab01)
- A compiler (we use dcc)
 - A translator that takes our formal human readable C and turns it into the actual machine readable program
 - The result of the compiler is a program we can "run"
- You can use VLAB to access CSE's editor and compiler
We need a shared language to be able to have this conversation
Well be looking at one particular language, C and learning how to write it. C is:

- A clear language with defined rules so that nothing we write in it is ambiguous
- Many modern programming languages are based on C
- A good starting point for learning how to control a computer from its roots
LET'S C SOME C

SORRY CAN'T HELP MYSELF!

```c
// a demo program showing printf in C
// Lecturer in Charge, May 2022

#include <stdio.h>

int main(void) {
    printf("Hello, World!\n");
    return 0;
}
```
BREAKING IT DOWN INTO PARTS

HEADER (LINES 1 & 2)

1 // a demo program showing printf in C
2 // Lecturer in Charge, May 2022

- Words for humans
- Half our code is for the machine, the other half is for humans! (roughly)
- We put “comments” in to describe to our future selves or our colleagues what we intended for this code
- // in front of a line makes it a comment
- If we use /* and */ everything between them will be comments
- The compiler will ignore comments, so they don't have to be proper code
BREAKING IT DOWN INTO PARTS

#include is a special tag for our compiler (Line 4)

- It asks the compiler to grab another file of code and add it to ours.
- In this case, it's the Standard Input Output Library, allowing us to make text appear on the screen (as well as other things).
- Almost every C program you will write in this course will have this line.

```
4 #include <stdio.h>
```
A function is a block of code that is a set of instructions.

Our computer will run this code line by line, executing our instructions.

The first line has details that we’ll cover in later lectures.

- `int` is the output type - this stands for integer, which is a whole number.
- `main` is the name of the function.
- `(void)` means that this function doesn't take any input.
BREAKING IT DOWN INTO PARTS

THE "MAIN" FUNCTION

```c
int main(void) {
    printf("Hello, World!\n");
    return 0;
}
```

- Between the `{` and `}` are a set of program instructions
- `printf()` makes text appear on the screen. It is actually another function from `stdio.h` which we included.
- `return` is a C keyword that says we are now delivering the output of the function. A main that returns 0 is signifying a correct outcome of the program
  ```c
  return 0;
  ```
EDITING AND COMPILATION

LET'S TRY THIS IN OUR EDITOR AND COMPILE IT

- In the Linux terminal we will open the file to edit
 `gedit helloWorld.c`
- Once we're happy with the code we've written, we'll compile it
 `dcc helloWorld.c -o hello`
 - The `-o` part tells our compiler to write out a file called "hello" that we can then run
- The `./` lets us run the program "hello" that is in our current directory
 `./hello`

```bash
vas605@vx7:~$ gedit helloWorld.c &
[1] 163970
vas605@vx7:~$ dcc helloWorld.c -o hello
vas605@vx7:~$ ./hello
Hello!
vas605@vx7:~$ 
```
AND WE ARE OFF!

WE NOW HAVE OUR FIRST WORKING PROGRAM...

- Try this yourself!
- Try it using VLAB via your own computer
- Try setting up a programming environment on your own computer (differing levels of difficulty depending on your operating system)
SOME INTERESTING FACTS/TRIVIA

Untold History of AI: Invisible Women Programmed America’s First Electronic Computer

The “human computers” who operated ENIAC have received little credit

IEEE Spectrum / Mar 25, 2019
WHAT DID WE LEARN TODAY?

ADMIN
How COMP1511 is run

RESOURCES
Where to find resources (course webpage and forum)

HELP!
How to get help and best ways to approach learning programming

WHAT IS ...?
What is programming?
What is an Operating System?
What is Linux?

LINUX
Some basic Linux commands to get you started

C
Hello World!
Check out the forum

CONTENT RELATED QUESTIONS
Check out the forum

ADMIN QUESTIONS
cs1511@cse.unsw.edu.au