COMP1511 PROGRAMMING FUNDAMENTALS

LECTURE 15

Abstract Data Types: Stacks

LAST WEEK...

e Returned to the ice-cream shop
example - rehashed and built on it
(putting together a linked list
example with inserting, traversing
and deleting)

e Talked about wusing leakcheck
command

e Speed ran through multi-file projects

e Multi File Projects - at slower speed

with an actual example
e Basic Command Line Arguments
e Abstract Data Types: Stack

WHERE IS THE CODE?

HTTPS://CGI.CSE.UNSW.EDU.AU/~CS1511/22T1/LIVE/WEEKQ9/

https://cgi.cse.unsw.edu.au/~cs1511/21T3/live/

LINKED
LIST -
ALWAYS
THINK

ABOUT!

e Some special boundary conditions that you need to

consider when you manipulate lists:

o Empty list

o List with 1 element

o Something hap

o Something hap

o Something will

oening at the beginning of the list

oening at the end of the list

not occur, the item is not in the list

(inserting after a number that doesn't exist etc)

MU LTI FI L E e Big programs are often spread out over multiple files.

There are a number of benefits to this:

PROJ ECT o Improves readability (reduces length of program)

o You can separate code by subject (modularity)

o Modules can be written and tested separately
WHAT ARE THEY? e 50 far we have already been using the multi-file
capability. Every time we #include, we are actually
borrowing code from other files

e We have been only including C standard libraries

MU LTI FI L E e You can also #include your own! (FUN!)

e This allows us to join projects together

P ROJ ECT e |t also allows multiple people to work together on
projects out in the real world

e We will also often produce code that we can then use

WHAT ARE THEY? again in other projects (that is all that the C standard

libraries are - functions that are useful in multiple

instances)

MULTI FILE
PROJECT
INCLUDES

.H FILE
.C FILE (MAYBE
MULTIPLES)

n a multi file project we might have:
(multiple) header file - this is the .h file that you have

oeen using from standard libraries already

‘multiple) implementation file - this is a .c file, it
implements what is in the header file.

Each header file that you write, will have its own
implementation file

a main.c file - this is the entry to our program, we try

and have as little code here as possible

impleme
ntation

header

file

#include " .h"

file

HEADER FILE EEowmhuin

e function prototypes for the functions that will be

#INCLUDE implemented in the implementation file
"SOMETHING.H" e comments that describe how the functions will be
used
e #defines

e the file basically SHOWS the programmer all they need
to know to use the code
e NO RUNNING CODE

e This is like a definition file

IM P L EM E NT This is where you implement the functions that you have
ATION FILE

defined in your header file

SOMETHING.C

IMP L EME NT This is where you call functions from that may exist in
ATION FILE

other modules.

MAIN.C

AN
EXAMPLE

A MATHS

*maths.h ¥

e We will have three files:

o header file - maths.h

o implementation file -

maths.c

s #include "maths.h”

o main file - main.c

s #finclude "maths.h”

main.c

1// This 1is the header file for the maths module example
2// The header file will contain:

8|/ / - any #define

4// - function prototypes and any comments
5

6 #define PI 3.14

i

8 //Function prototype for a function that calculates
9//square of a number

10int square(int number);

11

12 //Function prototype for a function that calculates
13//sum of two numbers

14int sum(int numberl, int number2);
18

1//This is the main file in our program
2//This is where we drive the program from and where we
3//make calls to our modules. We need to include the
4 //header file for each module that we want to use functions
5//from
6
7#include <stdio.h>
8 //Include the header file:
9#include "maths.h"
10
11int main (void) {
int number = 13;
int number2 = 10;
printf("The square of the number %d is %d\n", number, square
(number));
printf("The sum of %d and %d is %d\n"
(number, number2));
return 0;

, nhumber, number2, sum

maths.c

1//This is the implementation file of maths.h
2//We defined two functions in the header file,
3//and this is where we will implement these two
4 //functions

5

6//Include your header file in the implementation file
7//by using the below syntax

8

9#include "maths.h"

10

11int square(int number) {

12 return number * number;

13}

14

15int sum(int numberl, int number2) {

16 return numberl + number?2;

17}

COMPI L I NG e To compile a multi file, you basically list any .c files you

have in your project

A MU LTI o In the case of our example, we have a
ths.c and a main.c file):
FILE b J

= Terminal

File Edit View Terminal Tabs Help

:~/maths module$ dcc maths.c main.c -o maths

| :~/maths module$./maths
COMP"-E AI-I- C F"-ES The square of the number 13 is 169
IN THE PROJECT The sum of 13 and 10 1s 23

| :~/maths module$%
|

e The program will always enter in main.c, so there

should only be one main.c when compiling

ABST RACT o Abstract Data Types (ADT's) are data types whose

implementation details are hidden from the user

DATA TYP ES o What does this mean?

e A common example of an ADT is something called a

Stack - it has set ways in which it works but it can

WHAT ARE THEY? implemented using a number of different ways (for
example, using linked lists or using arrays)

e Whoever uses our code doesn’t need to see how it was
made

e They only really want to know how to use it

so WHAT IS e A Stack is a Last In, First Out structure (LIFO)

e S50 you can put something on top of a stack and you

A STAC K? can take something off the top of the stack, you

cannot remove things from underneath (think of your

dish stack toppling down!)

THINK A STACK OF
DISHES, OR A STACK

OF BOOKS

3int main (void) {

4 int number = .
5 int new number = 0;
6
7 new number = new number + square(number);
8
9 return 0;

THIS IS HOW OUR MEMORY 10}
11

STACK WORKS FOR FUNCTIONS 12 int square(int number) {
13 int changed number = change(number);
14 return changed number * changed number;
15}
16
17 int change(int number) {
18 return number + 1;

change() 19}
square() square() square()
main() main() main() main() main()
the main() starts main() calls square() calls return from return from
running on Line 3 square() on Line change() on Line change() on Line square() on Line
7-onlysquare() 13 -onlychange() 13tosquare() - 14 to main()
now accessible now accessible only square() now

accessible

WH ERE Is TH E e The idea of a stack is just that - an ideal!

e Can you think of anywhere a Stack is applied in our

ABST RACT everyday interactions with computers?
PART?

e A stack behaves in a certain way defined by a set of

: rules
itemS

e | am not given an implementation for this stack

item4 o | can do it using arrays

o | can do it using linked lists

item3 e 50 we could have a header file that just defines how the

: stack is used, but it could be implemented using arrays
item?2 P J Y

or linked lists and we would be none the wiser - doesn't

matter as long as it follows the rules of a Stack!

SO WHAT ARE
THE RULES OF
A STACK?

itemb

item3

item2

e The Stack has two special terms:
o push (onto the stack, so add the element to the top
of the Stack)
o pop (off the stack, take the top element off the
Stack)
e Let's look at a few functions:
o Create a Stack
o Add to the Stack (push)
o Take from the Stack (pop)
o Count how many things are in the Stack
o Destroy the Stack
e One header file (stack.h), and we will try two different
implementations one with arrays and one with lists

o stack_list.c & stack_array.c

HOW WI LL e A stack is a structure, which we will not define in the

header file, as our array and linked list files may use

TH E H EADE R slightly different definitions of the same structure
FI LE DE FI N E o We will then define our functions in the header file:

//This is the header file for the Stack

//This file describes the functions that should be implemented for the stack
//Sasha Vassar Week09 Lecture 15

#define MAX 100

Us , //This function creates the initial stack, so it will return a pointer to the
o

//stack it has created, and we input nothing into it, as we are just creating
//an empty stack
struct stack *create stack(void);

//This function pushes an item onto the stack - the function does not return
//anything, but is given the stack onto which the item is being pushed and the
//1item to be pushed

void push stack(struct stack *s, int item);

//This function pops an item off the stack - the function returns an
//int because it returns the value of the item it popped off and is given
//the stack from which they will be removing the item

int pop stack(struct stack *s);

//This function returns the size of the stack (so how many items are there
//1in this stack) - this means we are returned an int. And we give the
//function the stack that we want the size of.

int size stack(struct stack *s);

//This function destroys the whole stack and will free the space that
//was allocated initially - the function 1is given the stack to destroy
//and does not return anything

void destroy stack(struct stack *s);

LET'S DO A

// Define the stack structure itself, the stack structure in this case will
ION FI RST // have a size and a top node (which is the head)

struct stack {

struct node *top;
int size;

b

// Define each element of a stack as a node

STACK: DEFINING [l
A LINKED LIST
STACK

LET'S DO A new._stack = OXAAA
LINKED LIST
IMPLEMENTAT
ION FIRST

#include <stdio.h>
#include "stack.h"

int main(void) {

STA< : K struct stack *new stack = create stack();

push stack(new stack, 11);
push stack(new stack, 12);
push stack(new stack, 13);
push stack(new stack, 14);

— — — —

print stack(new stack);

printf("Popping the top of the stack - %d\n", pop stack(new stack));
print stack(new stack);

printf("Popping the top of the stack - %d\n", pop stack(new stack));
print stack(new stack);

return 0;

new stack = OxAAA

LET'S DO A
LINKED LIST
IMPLEMENTAT
JON FIRST

#include <stdio.h>
#include "stack.h"

int main(void) {

STA< : K struct stack *new stack = create stack();

push stack(new stack, 11);
pUSH _StacK(new stack, 1Z27J,
push stack(new stack, 13);
push stack(new stack, 14);

print stack(new stack);

printf("Popping the top of the stack - %d\n", pop stack(new stack));
print stack(new stack);

printf("Popping the top of the stack - %d\n", pop stack(new stack));
print stack(new stack);

return 0;

LET'S DO A
LINKED LIST
IMPLEMENTAT

JON FIRST

STACK

#include <stdio.h>
#include "stack.h"

int main(void) {

struct stack *new stack = create stack();

push stack(new stack

11);

push:stackinew_stack,

12);

push stack({mew stack,
push stack(new stack,

37,
14) ;

print stack(new stack);

printf("Popping the top of the stack - %d\n", pop stack(new stack));

print stack(new stack);

printf("Popping the top of the stack - %d\n", pop stack(new stack));
print stack(new stack);

return 0;

new stack = OxAAA

new stack = OxAAA

LET'S DO A
LINKED LIST
IMPLEMENTAT
JION FIRST

#include <stdio.h>
#include "stack.h"

int main(void) {

STA< : K struct stack *new stack = create stack();

push stack(new stack, 11);
push stack(new stack, 17):
push stack(new stack, 13);
puUSh_StackK(new stack, 147,

print stack(new stack);

printf("Popping the top of the stack - %d\n", pop stack(new stack));
print stack(new stack);

printf("Popping the top of the stack - %d\n", pop stack(new stack));
print stack(new stack);

return 0;

new stack = OxAAA

LET'S DO A
LINKED LIST
IMPLEMENTAT
JION FIRST

#include <stdio.h>
#include "stack.h"

int main(void) {

STA< : K struct stack *new stack = create stack();

push stack(new stack, 11);
push stack(new stack, 12);
push stack(new stack, 13);
push stack(new stack, 14);

— | — — —

print stack(new stack);

printf("Popping the top of the stack - %d\n", pop stack(new stack));
print stack(new stack);

printf("Popping the top of the stack - %d\n", pop stack(new stack));
print stack(new stack);

return 0;

LET'S DO A

LINKED LIST
IMPLEMENTAT

JION FIRST

new stack = OxAAA

#include <stdio.h>
#include "stack.h"

int main(void) {

STACK

struct stack *new stack = create stack();

push stack
push stack
push stack
push stack

new stack, 11);
new stack, 12);
new stack, 13);
new stack, 14);

— — — —

print stack(new stack);

printf("Popping the top of the stack - %d\n",| pop stack(new stack));
print stack(new stack);

printf("Popping the top of the stack - %d\n", pop stack(new stack));
print stack(new stack);

return 0;

new stack = OxAAA

LET'S DO A
LINKED LIST
IMPLEMENTAT
JION FIRST

#include <stdio.h>
#include "stack.h"

int main(void) {

STA< : K struct stack *new stack = create stack();

push stack(new stack, 11);
push stack(new stack, 12);
push stack(new stack, 13);
push stack(new stack, 14);

— — — —

print stack(new stack);

printf("Popping the top of the stack - %d\n", pop stack(new stack));
print stack(new stack);

printf("Popping the top of the stack - %d\n",| pop stack(new stack));
print stack(new stack);

return 0;

BREAK TIME...

We would like to find the three fastest horses from a
group of 25. We have no stopwatch and our race track has
only 5 lanes. No more than 5 horses can be raced at once.
How many races are necessary to evaluate the 3 fastest

horses?

#include <stdio.h=>
#include "stack.h"

int main(void) {
AN ARRAY struct stack *new stack = create stack();

push stack(new stack, 11);
push stack(new stack, 12);

push stack(new stack, 13);
push stack(new stack, 14);

print stack(new stack);

Io N , printf("Popping the top of the stack - %d\n", pop stack(new stack));
o print stack(new stack);

printf("Popping the top of the stack - %d\n", pop stack(new stack));
print stack(new stack);

return 0;

STACK

new stack = OxCCC

#include <stdio.h=>
#include "stack.h"

int main(void) {
AN ARRAY struct stack *new stack = create stack();

push stack(new stack, 11);
push stack(new stack, 1Z);

(
(
push stack(new stack, 13);
IMPLEMENTAT

print stack(new stack);

Io N , printf("Popping the top of the stack - %d\n", pop stack(new stack));
o print stack(new stack);

printf("Popping the top of the stack - %d\n", pop stack(new stack));
print stack(new stack);

return 0;

STACK

new stack = OxCCC

171

#include <stdio.h=>
#include "stack.h"

int main(void) {
AN ARRAY struct stack *new stack = create stack();

push stack(new stack, 11);
push stack(new stack, 12);

push_stack(new stack, I137];
push stack(new stack, 14);

print stack(new stack);

Io N , printf("Popping the top of the stack - %d\n", pop stack(new stack));
o print stack(new stack);

printf("Popping the top of the stack - %d\n", pop stack(new stack));
print stack(new stack);

return 0;

STACK

new stack = OxCCC

#include <stdio.h=>
#include "stack.h"

int main(void) {
AN ARRAY struct stack *new stack = create stack();

push stack(new stack, 11);
puqh stack(new stack 12)-

push stack(new stack, 13);
push stack(new stack, 14);

print stack(new stack);

Io N , printf("Popping the top of the stack - %d\n", pop stack(new stack));
o print stack(new stack);

printf("Popping the top of the stack - %d\n", pop stack(new stack));
print stack(new stack);

return 0;

STACK

new stack = OxCCC

/I 1 /] ;Zl 1 :53 [:::::::::::|::::::::::][::::::::::][::::::::::l:::::::::::l

#include <stdio.h=>
#include "stack.h"

int main(void) {
AN ARRAY struct stack *new stack = create stack();

push stack(new stack, 11);
push stack(new stack, 12);

push stack(new stack, 13):
push stack(new stack, 14);

print stack(new stack);

Io N , printf("Popping the top of the stack - %d\n", pop stack(new stack));
o print stack(new stack);

printf("Popping the top of the stack - %d\n", pop stack(new stack));
print stack(new stack);

return 0;

STACK

new stack = OxCCC

#include <stdio.h=>
#include "stack.h"

int main(void) {
AN ARRAY struct stack *new stack = create stack();

push stack(new stack, 11);
push stack(new stack, 12);

push stack(new stack, 13);
push stack(new stack, 14);
print stack(new stack); 1 AKL

Io N , printf("“Popping the top of the stack - **a_;tl\n“J pop stack(new stack));
o print stack(new stack);

printf("Popping the top of the stack - %d\n", pop stack(new stack));
print stack(new stack);

return 0;

STACK

new stack = OxCCC

#include <stdio.h=>
#include "stack.h"

int main(void) {
AN ARRAY struct stack *new stack = create stack();

push stack(new stack, 11);
push stack(new stack, 12);

push stack(new stack, 13);
push stack(new stack, 14);

print stack(new stack);

Io N , printf("Popping the top of the stack - %d\n", pop stack(new stack));
o print stack(new stack); /I 3

printf("“Popping the top of the stack - %d\n“J pop stack(new stack));]
print stack(new stack);

return 0;

STACK

new stack = OxCCC

OTH E R e There other abstract data types,

o one that works in the opposite way to a Stack is a

ABSTRACT Queve
DATA TYPES e A queue works just like a physical queue at the shops

(or when you line up to get some great tickets for a

music festival)

QUEU ES e 50 a Queue operates on First In, First Out principle - if
you get in a queue first, you will be served first...

e To get into the queue, you engqueue, and to get out of
the queue, dequeue.

e There are of course other possibilities for abstract data

types!

Feedback please!

| value your feedback and use to pace the lectures and improve your overall
learning experience. If you have any feedback from today’s lecture, please
follow the link below. Please remember to keep your feedback constructive,

so | can action it and improve the learning experience.

https://www.menti.com/ym1pro5428

WHAT DID WE LEARN TODAY?

MULTI-FILE ABSTRACT
PROJECTS DATA TYPES
maths.c Stack:

main.c
maths.h stack.h
stack.c

main.c

REACH OUT

CONTENT RELATED

QUEST
Check out t

ONS

ne forum

ADMIN QUESTIONS

cs1511@cse.unsw.edu.au

