
COMP1511 PROGRAMMING FUNDAMENTALS

LECTURE 15
Abstract Data Types: Stacks

LA
ST

 W
EE

K
..

.

Returned to the ice-cream shop

example - rehashed and built on it

(putting together a linked list

example with inserting, traversing

and deleting)

Talked about using leakcheck

command

Speed ran through multi-file projects

Multi File Projects - at slower speed

with an actual example

Basic Command Line Arguments

Abstract Data Types: Stack

TO
D

A
Y

..
.

WHERE IS THE CODE?

Live lecture code can be found here:
HTTPS://CGI.CSE.UNSW.EDU.AU/~CS1511/22T1/LIVE/WEEK09/

https://cgi.cse.unsw.edu.au/~cs1511/21T3/live/

LINKED
LIST -
ALWAYS
THINK
ABOUT!

Some special boundary conditions that you need to

consider when you manipulate lists:

Empty list

List with 1 element

Something happening at the beginning of the list

Something happening at the end of the list

Something will not occur, the item is not in the list

(inserting after a number that doesn't exist etc)

MULTI FILE
PROJECT

WHAT ARE THEY?

Big programs are often spread out over multiple files.

There are a number of benefits to this:

Improves readability (reduces length of program)

You can separate code by subject (modularity)

Modules can be written and tested separately

So far we have already been using the multi-file

capability. Every time we #include, we are actually

borrowing code from other files

We have been only including C standard libraries

MULTI FILE
PROJECT

WHAT ARE THEY?

You can also #include your own! (FUN!)

This allows us to join projects together

It also allows multiple people to work together on

projects out in the real world

We will also often produce code that we can then use

again in other projects (that is all that the C standard

libraries are - functions that are useful in multiple

instances)

MULTI FILE
PROJECT
INCLUDES

.H FILE
.C FILE (MAYBE
MULTIPLES)

In a multi file project we might have:

(multiple) header file - this is the .h file that you have

been using from standard libraries already

(multiple) implementation file - this is a .c file, it

implements what is in the header file.

Each header file that you write, will have its own

implementation file

a main.c file - this is the entry to our program, we try

and have as little code here as possible

header
file

#include " .h"

impleme
ntation
file

.c

HEADER FILE
#INCLUDE
"SOMETHING.H"

function prototypes for the functions that will be

implemented in the implementation file

comments that describe how the functions will be

used

 #defines

the file basically SHOWS the programmer all they need

to know to use the code

NO RUNNING CODE

This is like a definition file

Typically contains:

IMPLEMENT
ATION FILE

SOMETHING.C

This is where you implement the functions that you have

defined in your header file

IMPLEMENT
ATION FILE

MAIN.C

This is where you call functions from that may exist in

other modules.

AN
EXAMPLE

A MATHS

We will have three files:

header file - maths.h

implementation file - maths.c

#include "maths.h"

main file - main.c

#include "maths.h"

COMPILING
A MULTI
FILE

COMPILE ALL C FILES
IN THE PROJECT

To compile a multi file, you basically list any .c files you

have in your project

In the case of our example, we have a

The program will always enter in main.c, so there

should only be one main.c when compiling

maths.c and a main.c file):

ABSTRACT
DATA TYPES

WHAT ARE THEY?

Abstract Data Types (ADT's) are data types whose

implementation details are hidden from the user

 What does this mean?

A common example of an ADT is something called a

Stack - it has set ways in which it works but it can

implemented using a number of different ways (for

example, using linked lists or using arrays)

Whoever uses our code doesn't need to see how it was

made

They only really want to know how to use it

SO WHAT IS
A STACK?

THINK A STACK OF
DISHES, OR A STACK
OF BOOKS

A Stack is a Last In, First Out structure (LIFO)

So you can put something on top of a stack and you

can take something off the top of the stack, you

cannot remove things from underneath (think of your

dish stack toppling down!)

THIS IS HOW OUR MEMORY
STACK WORKS FOR FUNCTIONS

main() main() main() main()

square() square()

change()

square()

the main() starts
running on Line 3

main() calls
square() on Line
7 - only square()
now accessible

square() calls
change() on Line

13 - only change()
now accessible

return from
change() on Line
18 to square() -

only square() now
accessible

return from
square() on Line

14 to main()

main()

WHERE IS THE
ABSTRACT
PART?

The idea of a stack is just that - an idea!

Can you think of anywhere a Stack is applied in our

everyday interactions with computers?

A stack behaves in a certain way defined by a set of

rules

I am not given an implementation for this stack

I can do it using arrays

I can do it using linked lists

So we could have a header file that just defines how the

stack is used, but it could be implemented using arrays

or linked lists and we would be none the wiser - doesn't

matter as long as it follows the rules of a Stack!

item1

item2

item3

item4

item5

SO WHAT ARE
THE RULES OF
A STACK?

The Stack has two special terms:

push (onto the stack, so add the element to the top

of the Stack)

pop (off the stack, take the top element off the

Stack)

Let's look at a few functions:

Create a Stack

Add to the Stack (push)

Take from the Stack (pop)

Count how many things are in the Stack

Destroy the Stack

One header file (stack.h), and we will try two different

implementations one with arrays and one with lists

stack_list.c & stack_array.c

item1

item2

item3

item4

item5

HOW WILL
THE HEADER
FILE DEFINE
THINGS FOR
US?

A stack is a structure, which we will not define in the

header file, as our array and linked list files may use

slightly different definitions of the same structure

We will then define our functions in the header file:

LET'S DO A
LINKED LIST
IMPLEMENTAT
ION FIRST

STACK: DEFINING
A LINKED LIST
STACK

LET'S DO A
LINKED LIST
IMPLEMENTAT
ION FIRST

STACK

new_stack = 0xAAA

LET'S DO A
LINKED LIST
IMPLEMENTAT
ION FIRST

STACK

11
NULL

0xC11

NULL

new_stack = 0xAAA

LET'S DO A
LINKED LIST
IMPLEMENTAT
ION FIRST

STACK

11
NULL

0xC11

NULL

12
0xC11

0xDF1

new_stack = 0xAAA

LET'S DO A
LINKED LIST
IMPLEMENTAT
ION FIRST

STACK

11
NULL

0xC11

NULL

12
0xC11

0xDF1

13
0xDF1

0x111

new_stack = 0xAAA

LET'S DO A
LINKED LIST
IMPLEMENTAT
ION FIRST

STACK

11
NULL

0xC11

NULL

12
0xC11

0xDF1

13
0xDF1

0x111

14
0x111

0xBBB

new_stack = 0xAAA

LET'S DO A
LINKED LIST
IMPLEMENTAT
ION FIRST

STACK

11
NULL

0xC11

NULL

12
0xC11

0xDF1

13
0xDF1

0x111

new_stack = 0xAAA

LET'S DO A
LINKED LIST
IMPLEMENTAT
ION FIRST

STACK

11
NULL

0xC11

NULL

12
0xC11

0xDF1

new_stack = 0xAAA

BR
EA

K
 T

IM
E.

..

We would like to find the three fastest horses from a

group of 25. We have no stopwatch and our race track has

only 5 lanes. No more than 5 horses can be raced at once.

How many races are necessary to evaluate the 3 fastest

horses?

WHAT ABOUT
AN ARRAY
IMPLEMENTAT
ION?

STACK

new_stack = 0xCCC

WHAT ABOUT
AN ARRAY
IMPLEMENTAT
ION?

STACK

new_stack = 0xCCC

11

WHAT ABOUT
AN ARRAY
IMPLEMENTAT
ION?

STACK

new_stack = 0xCCC

11 12

WHAT ABOUT
AN ARRAY
IMPLEMENTAT
ION?

STACK

new_stack = 0xCCC

11 12 13

WHAT ABOUT
AN ARRAY
IMPLEMENTAT
ION?

STACK

new_stack = 0xCCC

11 12 1413

WHAT ABOUT
AN ARRAY
IMPLEMENTAT
ION?

STACK

new_stack = 0xCCC

11 12 13

14

WHAT ABOUT
AN ARRAY
IMPLEMENTAT
ION?

STACK

new_stack = 0xCCC

11 12

13

OTHER
ABSTRACT
DATA TYPES

QUEUES

There other abstract data types,

one that works in the opposite way to a Stack is a

Queue

A queue works just like a physical queue at the shops

(or when you line up to get some great tickets for a

music festival)

So a Queue operates on First In, First Out principle - if

you get in a queue first, you will be served first...

To get into the queue, you enqueue, and to get out of

the queue, dequeue.

There are of course other possibilities for abstract data

types!

Feedback please!
I value your feedback and use to pace the lectures and improve your overall

learning experience. If you have any feedback from today's lecture, please

follow the link below. Please remember to keep your feedback constructive,

so I can action it and improve the learning experience.

https://www.menti.com/ym1pro5428

Stack:

stack.h

stack.c

main.c

ABSTRACT
DATA TYPES

WHAT DID WE LEARN TODAY?

maths.c

main.c

maths.h

MULTI-FILE
PROJECTS

RE
A

C
H

 O
U

T

cs1511@cse.unsw.edu.au

ADMIN QUESTIONS

Check out the forum

CONTENT RELATED
QUESTIONS

