COMP1511 PROGRAMMING FUNDAMENTALS

LECTURE 13

Time to delete from a linked list




LAST WEEK...

e Linked Lists -

O

O

O

O

O

creating a list

inserting nodes at the head
traversing a list

inserting nodes at the tail
inserting a node between two

other nodes



e Linked Lists -
o deleting nodes in a list

m 3t the head

m 3t the tail

= in the middle

>
<
o
O
—

= with only one item in a list

o harder example of linked lists



WHERE IS THE CODE?

D%Eﬁg Live lecture code can be found here:

- HTTPS://CGI.CSE.UNSW.EDU.AU/~CS1511/22T1/LIVE/WEEKQ8/

LIS n: =i



https://cgi.cse.unsw.edu.au/~cs1511/21T3/live/

RE CAP OF e Where can | insert in a linked list?

o At the head

L I N KE D o Between any two nodes that exist
o After the tail as the last node
LISTS

head = 0xB62

0x666

INSERTING




RE CAP OF e | can also have other conditions, for example insert in

the middle of a list, insert after the first element of a

LINKED list, etc
LISTS

INSERTING




L I N KE D e Where can | delete in a linked list?

o Nowhere (if it is an empty list - edge case!)

LISTS o At the head (deleting the head of the list)

o Between any two nodes that exist
o At the tail (last node of the list)

DELETING




L I N KE D e Deleting when nowhere! (it is an empty list)

o Check if list is empty

LISTS o |f itis - return NULL

struct node *current = head;
if (current == NULL){
return NULL;

¥

DELETING

EMPTY LIST




L I N KE D e Deleting when there is only one item in the list
LISTS

head = 0xB62

DELETING

ONE ITEM
LIST

NULL




e Deleting when there is only one item in the list
LINKED o free the head!
LISTS

ad = OxB

e

DELETING

ONE ITEM
LIST

NULL

O0xB62




L I N KE D e Deleting when at the head of the list with other items

in the list
L I STS o Find the node that you want to delete (the head)

struct node *current = head

head = 0xB62

DELETING

THE HEAD
WITH OTHER
ITEMS

current->next




L I N KE D e Deleting when at the head of the list with other items

in the list

LISTS o Point the head to the next node

struct node *new _head = current->next;

DELETING

THE HEAD [ B
WITH OTHER
ITEMS

current




e Deleting when at the head of the list with other items

LINKED in the list
LISTS o Delete the current head

free(current);

DELETING

NULL

THE HEAD
WITH OT HER current current->next

ITEMS A W4 :J

A

O0xB62 OxA44 OXEFFO




e Deleting when in the middle of two nodes (for
L I N KE D example, node with 3)
L I STS o Set the head to a variable current to keep track
of the loop

struct node *current = head

head = 0xB62

current

DELETING

IN MIDDLE
OF TWO
NODES

current->next T




e Deleting when in the middle of two nodes (for
L I N KE D example, node with 3)
LISTS o Loop until you find the right node - what do we
think loop until the node with 3 or the previous

node? Remember that onceyou are on the node

DE L ETI NG th 3, you have no idea what previous node was.

current

IN MIDDLE
OF TWO
NODES

current->next T




e Deleting when in the middle of two nodes (for
L I N KE D example, node with 3)

o So stop at a previous node (when the next is = 3)
LISTS
while (current->next->data !'= 3){
current = current->next;
¥
DELETING
IN MIDDLE

current current->next

OF TWO
NODES




LINKED
LISTS

DELETING
IN MIDDLE
OF TWO
NODES

e Deleting when in the middle of two nodes (for

example, node with 3)

o Create new next node to store address

struct node *new next = current->next->next;

head = 0xB62

current

current->next

NULL

new_nex

.

g




LINKED
LISTS

DELETING
IN MIDDLE
OF TWO
NODES

e Deleting when in the middle of two nodes (for
example, node with 3)

o Delete current->next

free(current->next);

head = 0xB62

current




LINKED
LISTS

DELETING
IN MIDDLE
OF TWO
NODES

e Deleting when in the middle of two nodes (for

example, node with 3)

o Set the new current->next to the new_next node

current->next = new_next;

head = 0xB62

current

NULL

currentj[next




e Deleting when in the tail
L I N KE D o Set the current pointer to the head of the list

LISTS struct node *current = head

DELETING

NULL
THE TAIL I
current current->next current—>nexT—

>ne

.




LINKED
LISTS

DELETING
THE TAIL

e Deleting when in the tail
o Find the tail of the list (should | stop on the tail or
nefore the tail?)

o If the next is NULL than | am at the tail...
while (current->next->next !'= NULL){
current = current->next;

NULL

current—:[;xt

.

current

O0xB62 O0xA44 OxFFO




e Deleting when in the tail
L I N KE D o Delete the current->next node
L I STS free(current->next);

DELETING

NULL

THE TAIL

current current—>Text




e Deleting when in the tail
L I N KE D o Point my current->next node to a NULL

LISTS current->next = NULL;

DELETING

NULL

head = 0xB62

THE TAIL

current

0xB62 OxA44



e |n all instances, we follow a similar structure of what
L I N KE D to do when deleting a node. Please draw a diagram for
L I STS yourself to really understand what you are deleting
and the logic of deleting in a particular way.

e [0 delete a node in a linked list:

D E L ETI N G o Find the previous node to the one that is being

deleted

A N o D E o Change the next of the previous node

o Free the node that is to be deleted




struct node *delete node (struct node *head, int data) {
//create a current pointer that is set to the head of the list
struct node *current = head;

// 1f there 1s nothing in the list

1f (current == NULL) {
L I I return NULL;
// deleting at the head of the Llist

} else if (current->data == data) {

struct node *new head = current->next;

free(current);

return new head; //will return whatever was after current as the new head
// 1f there 1is only one node in the list and it 1s the one to be deleted
// above will capture 1it.

I }
D E L E I N G //otherwise start looping through the list to find the data

//1. find the previous node to the one you want to delete
while (current->next->data !'= data && current->next->next !'= NULL) {

A N o D E current = current-=next;
}
J//2. 1f the next node i1s the one to be deleted

1f (current->next->data == data) {
// create a pointer to the new next
struct node *new next = current->next->next;
// 3. free the node to be deleted
free(current-=next);
//polnt the next node to the new pointer
current->next = new next;

}

return head;




BREAK TIME...

Can you d

hour hanc

etermine how many times do the minute and

s of a clock overlap in a day?



HARDER
EXAMPLE

A PROBLEM

I've changed my mind on the problem, and now we are going to run an
ice-cream shop...

| have decided to run an ice-cream shop (no surprises here)

| want to create a program that can:

1) Take in all the flavours of ice cream that | have to offer by adding
them to the end of the list

2) | want to be able to print out the flavours

3) | would then like to add the flavours in alphabetical order

4) Delete flavours as we finish them.

Starter code is provided




Feedback please!

| value your feedback and use to pace the lectures and improve your overall
learning experience. If you have any feedback from today’s lecture, please
follow the link below. Please remember to keep your feedback constructive,

so | can action it and improve the learning experience.

https://www.menti.com/na5yrb8evn



WHAT DID WE LEARN TODAY?

LINKED LISTS HARDER
- DELETING EXAMPLES

linked_list.c fifa.c



REACH OUT

CONTENT RELATED

QUEST
Check out t

ONS

ne forum

ADMIN QUESTIONS

cs1511@cse.unsw.edu.au




