
COMP1511 PROGRAMMING FUNDAMENTALS

LECTURE 12
Linked Lists - traversing, inserting at the head or
at the tail, searching for something

LA
ST

 T
IM

E.
..

Linked Lists - creating a list by

inserting at the head.

TO
D

A
Y

..
.

Linked Lists - traversing a list and

inserting at the tail

Linked Lists - searching for

conditions

WHERE IS THE CODE?

Live lecture code can be found here:
HTTPS://CGI.CSE.UNSW.EDU.AU/~CS1511/22T1/LIVE/WEEK07/

https://cgi.cse.unsw.edu.au/~cs1511/21T3/live/

A LINKED
LIST IS
MADE UP OF
MANY
NODES

THE NODES ARE
LINKED TOGETHER (A
SCAVENGER HUNT
OF POINTERS)

int data

node

struct
node
*next;

int data

node

struct
node
*next;

int data

node

struct
node
*next;

A pointer
to the
first node

NULL

A LINKED
LIST IS
MADE UP OF
MANY
NODES

THE NODES ARE
LINKED TOGETHER (A
SCAVENGER HUNT
OF POINTERS)

For example a list with 1, 3, 5

3

0xFF0

head = 0xB62

0xFF0

0x666
NULL

5

NULL

0xA44

0xA44

0xB62

1

HOW CAN
WE MOVE
THROUGH
THIS LIST
TO FIND
NEXT
NODE?

How do you think we can move through the list to

start a the head and then move to each subsequent

node until we get to the end of the list...

3

0xFF0

head = 0xB62

0xFF0

0x666
NULL

5

NULL

0xA44

0xA44

0xB62

1

HOW CAN
WE MOVE
THROUGH
THIS LIST
TO FIND
NEXT
NODE?

Set your head pointer to the current pointer to keep track

of where you are currently located....

3

0xFF0

head = 0xB62

0xFF0

0x666
NULL

5

NULL

0xA44

0xA44

0xB62

1

struct node *current = head

current

HOW CAN
WE MOVE
THROUGH
THIS LIST
TO FIND
NEXT
NODE?

Now how would we move the current along?

3

0xFF0

head = 0xB62

0xFF0

0x666
NULL

5

NULL

0xA44

0xA44

0xB62

1

current = current->next

current

HOW CAN
WE MOVE
THROUGH
THIS LIST
TO FIND
NEXT
NODE?

Now how would we move the current along?

3

0xFF0

head = 0xB62

0xFF0

0x666
NULL

5

NULL

0xA44

0xFF0

0xB62

1

current = current->next

current

HOW CAN
WE MOVE
THROUGH
THIS LIST
TO FIND
NEXT
NODE?

Now how would we move the current along?

When should I be stopping?

3

0xFF0

head = 0xB62

0xFF0

0x666
NULL

5

NULL

0xA44

0xFF0

0xB62

1

current = current->next

while (current != NULL)

current

SO
TRAVERSING
A LINKED
LIST...

The only way we can make our way through the linked

list is like a scavenger hunt, we have to follow the

links from node to node (sequentially! we can't skip

nodes)

We have to know where to start, so we need to know

the head of the list

When we reach the NULL pointer, it means we have

come to the end of the list.

SO NOW,
LET'S PRINT
EACH NODE
OUT...

void print_list(struct node *head){
 struct node *current = head;
 while (current != NULL){
 printf("%d\n", current->data);
 current = current->next;
 }
}

BR
EA

K
 T

IM
E.

..

You have five boxes in a row numbered 1 to 5, in one of

which, a cat is hiding. Every night he jumps to an adjacent

box, and every morning you have one chance to open a box

to find him. How do you win this game of hide and seek -

what is your strategy? What if there are n boxes?

INSERTING
ANYWHERE
IN A LINKED
LIST...

Where can I insert in a linked list?

At the head (last lecture)

Between any two nodes that exist

After the tail as the last node

3

head = 0xB62

0xFF0

0x666
NULL

5

NULL

0xA44

0xFF0

0xB62

1

0xB62

FINDING
WHERE TO
INSERT

I could have a condition that will help me find at which

point to insert (specified by my problem)

In my list, for example, it could be that I want to put a

4 between 3 and 5...

This would involve searching through the list to find 3

Or if the list is in order, it may be to find the value

less than the one I am inserting and the value

after to be greater than the value I am inserting

and then insert by creating a new node and linking

it to the right space...

LINKED LIST
EXAMPLE
INSERTING
BETWEEN
NODES

INSERT 4 (AFTER 3
AND BEFORE 5)

Find where to insert: Is current less than 5 AND next more

than 5?

Set current to the head of the list to begin traversal

3

head = 0xB62

0xFF0

0x666
NULL

5

NULL

0xA44

0xFF0

0xB62

1

0xB62

current = head

struct node *current = head

LINKED LIST
EXAMPLE
INSERTING
BETWEEN
NODES

INSERT 4 (AFTER 3
AND BEFORE 5)

Find where to insert: Is current less than 5 AND next more

than 5?

Traverse list until you find the right node to insert after...

3

head = 0xB62

0xFF0

0x666
NULL

5

NULL

0xA44

0xFF0

0xB62

1

0xB62

current

current = current->next

LINKED LIST
EXAMPLE
INSERTING
BETWEEN
NODES

INSERT 4 (AFTER 3
AND BEFORE 5)

Find where to insert: Is current less than 5 AND next more

than 5?

Traverse list until you find the right node to insert after...

3

head = 0xB62

0xFF0

0x666
NULL

5

NULL

0xA44

0xFF0

0xB62

1

0xB62

current

current = current->next

current->data < 5 && current->next->data > 5

LINKED LIST
EXAMPLE
INSERTING
BETWEEN
NODES

INSERT 4 (AFTER 3
AND BEFORE 5)

Now that you found location to insert, create the node

3

head = 0xB62

0xFF0

0x666
NULL

5

NULL

0xA44

0xFF0

0xB62

1

0xB62

current
0xBBB

4

NULL

struct node *new_node = malloc(sizeof(struct
node));
new_node->data = 4;
new_node->next = NULL;

LINKED LIST
EXAMPLE
INSERTING
BETWEEN
NODES

INSERT 4 (AFTER 3
AND BEFORE 5)

Now insert the node after the current node...

3

head = 0xB62

0xFF0

0x666 NULL

5

NULL

0xA44

0xFF0

0xB62

1

0xBBB

current

0xBBB

4

0xFFO

new_node->next = current->next;
current->next = new_node;

LINKED LIST
EXAMPLE
INSERTING
BETWEEN
NODES

INSERT 4 (AFTER 3
AND BEFORE 5)

Now let's insert at the end of the list... let's insert 10

Set current to the head of the list to begin traversal until

the end of the list....

3

head = 0xB62

0xFF0

0x666
NULL

5

NULL

0xA44

0xFF0

0xB62

1

0xFF0

current = head

struct node *current = head

LINKED LIST
EXAMPLE
INSERTING
BETWEEN
NODES

INSERT 4 (AFTER 3
AND BEFORE 5)

Moving along the list now - 1st loop

3

head = 0xB62

0xFF0

0x666
NULL

5

NULL

0xA44

0xFF0

0xB62

1

0xFF0

current

current = current->next

LINKED LIST
EXAMPLE
INSERTING
BETWEEN
NODES

INSERT 4 (AFTER 3
AND BEFORE 5)

Moving along the list now - 2nd loop

3

head = 0xB62

0xFF0

0x666
NULL

5

NULL

0xA44

0xFF0

0xB62

1

0xFF0

current

current = current->next

LINKED LIST
EXAMPLE
INSERTING
BETWEEN
NODES

INSERT 4 (AFTER 3
AND BEFORE 5)

Now we want to stop before we get to the NULL, so we

want to stop at the last node and not go past it... so stop

here and not at NULL

3

head = 0xB62

0xFF0

0x666
NULL

5

NULL

0xA44

0xFF0

0xB62

1

0xFF0

current

while (current->next != NULL)

LINKED LIST
EXAMPLE
INSERTING
BETWEEN
NODES

INSERT 4 (AFTER 3
AND BEFORE 5)

Now that we know where to insert, create the node

3

head = 0xB62

0xFF0

0x666
NULL

5

NULL

0xA44

0xFF0

0xB62

1

0xFF0

current

struct node *new_node = malloc(sizeof(struct
node));
new_node->data = 10;
new_node->next = NULL;

0xBBB

10

NULL

LINKED LIST
EXAMPLE
INSERTING
BETWEEN
NODES

INSERT 4 (AFTER 3
AND BEFORE 5)

Now we have a node, connect it...

3

head = 0xB62

0xFF0

0x666

NULL

5

0xBBB

0xA44

0xFF0

0xB62

1

0xFF0

current

current->next = new_node;
new_node->next = NULL;

0xBBB

10

NULL

Feedback please!
I value your feedback and use to pace the lectures and improve your overall

learning experience. If you have any feedback from today's lecture, please

follow the link below. Please remember to keep your feedback constructive,

so I can action it and improve the learning experience.

https://www.menti.com/7fpo8e3pa1

Traverse a list

linked_list.c

LINKED LIST

Insert anywhere

linked_list.c

LINKED LIST

WHAT DID WE LEARN TODAY?

RE
A

C
H

 O
U

T

cs1511@cse.unsw.edu.au

ADMIN QUESTIONS

Check out the forum

CONTENT RELATED
QUESTIONS

