
COMP1511 PROGRAMMING FUNDAMENTALS

LECTURE 10
fine, this time it is for real - STRINGS
The start of a beautiful friendship- Linked Lists

LA
ST

 T
IM

E.
..

Revisited pointers to make a point

Characters and some of their fun

functions

TO
D

A
Y

..
.

Strings (or maybe I will just continue

to string you along)

The one, the only, the truly magical,

magnificent Linked Lists

WHERE IS THE CODE?

Live lecture code can be found here:
HTTPS://CGI.CSE.UNSW.EDU.AU/~CS1511/22T1/LIVE/WEEK05/

https://cgi.cse.unsw.edu.au/~cs1511/21T3/live/

STRINGS

WHAT ARE THEY?

Strings are a collection of characters that are joined

together

an array of characters!

There is one very special thing about strings in C - it is

an array of characters that finishes with a

This symbol is called a null terminating character

It is always located at the end of an array, therefore

an array has to always be able to accomodate this

character

It is not displayed as part of the string

It is a placeholder to indicate that this array of

characters is a string

It is very useful to know when our string has come to

an end, when we loop through the array of characters

HOW DO
WE
DECLARE A
STRING?

WHAT DOES IT LOOK
LIKE VISUALLY?

Because strings are an array of characters, the array

type is char.

To declare and initialise a string, you can use two

methods:

 //the more convenient way
char word[] = "hello";
//this is the same as'\0':
char word[] = {'h','e','l','l','o','\0'};

0 1 2 3 4 5

char char char char char char

\0eh l l 0

array[] - the array that the string will be stored into

length - the number of characters that will be read in

stream - this is where this string is coming from - you

don't have to worry about this one, in your case, it will

always be stdin (the input will always be from

terminal)

There is a useful function for reading strings:

The function needs three inputs:

HELPFUL
LIBRARY
FUNCTIONS
FOR
STRINGS
FGETS()

fgets(array[], length, stream)

// Declare an array where you will place the
string that you read from somewhere
char array[MAX_LENGTH];
// Read in the string into array of length
MAX_LENGTH from terminal input
fgets(array, MAX_LENGTH, sdin)

 fgets() stops reading when either length-1 characters

are read, newline character is read or an end of file is

reached, whichever comes first

Using the keyword, you can continuously get string

input from terminal until Ctrl+D is pressed
HOW DO I
KEEP
READING
STUFF IN
OVER AND
OVER
AGAIN?

NULL

array[] - the array that the string is be stored in

stream - this is where this string will be output to, you

don't have to worry about this one, in your case, it will

always be stdout (the output will always be in

terminal)

Another useful function to output strings:

The function needs two inputs:

HELPFUL
LIBRARY
FUNCTIONS
FOR
STRINGS
FPUTS()

fputs(array[], stream)

// Declare an array where you will place the
string that you read from somewhere
char array[MAX_LENGTH];
// Read in the string into array of length
MAX_LENGTH from terminal input
fgets(array, MAX_LENGTH, sdin)
//Output the array now
fputs(array, stdout)

 gives us the length of the string (excluding

the '\0'

 copy the contents of one string to another

 attach one string to the end of another

(concatenate)

 compare two strings

 find the first or last occurance of a

character

Some other useful functions for strings:SOME OTHER
INTERESTING
STRING
FUNCTIONS

<STRING.H>
STANDARD LIBRARY

CHECK OUT THE REST OF THE FUNCTIONS:
HTTPS://WWW.TUTORIALSPOINT.COM/
C_STANDARD_LIBRARY/STRING_H.HTM

strcpy()

strlen()

strcat()

strchr()

strcmp()

USING
SOME OF
THESE
FUNCTIONS

STRINGS

QUICK
REHASH

MEMORY

This means that if we create data inside a function, it

will die when that function finishes running

This is memory that is allocated by the compiler at

compile time...

So far we have talked a bit about how variables are stored

in memory, and live in their world {} in the stack memory

// Make an array
int *create_array(void) {
 int numbers[10] = {0};
 // Return pointer to the array
 return numbers;
}
//However, when we close the curly brakes,our
//array is killed, so we are returning a
//pointer to memory that we no longer have...

BUT WHAT
HAPPENS IF
I WANT TO
SAVE SOME
MEMORY?

MALLOC()

We do have the wonderful opportunity to allocate

some memory by calling the function and

letting this function know how many bytes of memory

we want

this function returns a pointer to the piece of

memory we created based on the number of bytes

we specified as the input to this function

this also allows us to dynamically create memory

as we need it - neat!

This means that we are now in control of this

memory (cue the evil laugh!)

malloc()

WHAT IF I
RUN WILD
AND JUST
KEEP
ASKING
FOR
MEMORY?

FREE()

This piece of memory is ours to control and it is

important to remember to kill it or you will eat up all

the memory you computer has... often called a

memory leak...

A memory leak occurs when you have dynamically

allocated memory (with) that you do not

free - as a result, memory is lost and can never be

free causing a memory leak

You can free memory that you have created by using

the function

It would be very impolite to keep requesting memory to be

made (and hog all that memory!), without giving some

back...

malloc()

free()

HOW DO I
KNOW HOW
MUCH
MEMORY TO
ASK FOR
WHEN I USE
MALLOC()

SIZEOF()

We can use the function to give us the

exact number of bytes we need to malloc (memory

allocate)

sizeof()

PUTTING IT
ALL
TOGETHER:

MALLOC(SIZEOF())
FREE()

Using all of these together in a simple example:

STRUCTS
AND
POINTERS

-> VERSUS .

Remember that when we access members of a struct

we use a .

What happens if we make a pointer of type struct?

How do we access it then?STRUCTS
AND
POINTERS

-> VERSUS .

Those brackets can get quite confusing, so there is a

shorthand way to do this with an ->

There is no need to use *(jax_ptr) and instead can just

straight jax_ptr ->

STRUCTS
AND
POINTERS

-> VERSUS .

Now that you have become comfortable with arrays,

we are going to become acquainted with another

important data structure (drum roll please �):

The one and only LINKED LIST �

WHY ARE
YOU
HURTING US
WITH ALL
THIS STUFF?

WE HAVE COME TO
THE ULTIMATE
REVEAL.

Like an array, a linked list is used to store a collection

of the same data type

So what's the point?

Linked lists are dynamically sized, that means we

can grow and shrink them as needed - efficient

for memory!

Elements of a linked list (called nodes) do NOT

need to be stored contiguously in memory, like an

array.

Unlike arrays, linked lists are not random access

data structures! You can only access items

sequentially, starting from the beginning of the

list.

INTRODUCIN
G A NEW
DATA
STRUCTURE

LINKED LISTS

d3TecTiv3

LET'S
VISUALISE IT

LINKED LISTS

We hope that you all have a good rest and catch up

over the Flex Week time.

There are no formal classes next week!

There is a social COM-PUN-TITION event

There are two bonus ethics talks for those

interested in how ethics is dealt with in computing

- it is a fascinating topic!

Help Sessions are still running, please check the

timetable

Forum will be monitored closely to help you with any

Assignment 1 queries

HAVE A
RESTFUL FLEX
WEEK!

Social events and Bonus Streams next week (none of the

material is examinable and optional if you are interested!):

Com-pun-tition = Make me laugh until I cry

Wednesday 1pm (Register via QR Code)

Ethics guest talks by Dr Sebastian Sequoiah-Grayson (videos

will be available next week, and then log in for a chat about

ethics and what role it plays in computing - fascinating!)

Tuesday 4pm: Normative Ethics for Computer Programmers

Friday 3pm: Meta ethics for Computer Programmers

SOCIAL AND
BONUS
STREAMS IN
FLEX WEEK

Feedback please!
I value your feedback and use to pace the lectures and improve your overall

learning experience. If you have any feedback from today's lecture, please

follow the link below. Please remember to keep your feedback constructive,

so I can action it and improve the learning experience.

https://www.menti.com/ynkk1gomx7

strings.c

string_functions.c

STRINGS
(FINALLY!)

size_of.c

memory.c

struct_pointer.c

LINKED LISTS

WHAT DID WE LEARN TODAY?

RE
A

C
H

 O
U

T

cs1511@cse.unsw.edu.au

ADMIN QUESTIONS

Check out the forum

CONTENT RELATED
QUESTIONS

