
COMP1511 PROGRAMMING FUNDAMENTALS

LECTURE 9
Some awesome functions for your characters and
finally introducing STRINGS!

LA
ST

 W
EE

K
..

.

Learnt about 1D arrays

Looked at 2D arrays (which make up

a grid and allow us to do some pretty

cool stuff)

Got introduced to pointers

 T
O

D
A

Y
..

.

Revisit pointers, by solving a problem

with pointers

Learn two new functions available to

us: getchar() and putchar()

Look at strings

WHERE IS THE CODE?

Live lecture code can be found here:
HTTPS://CGI.CSE.UNSW.EDU.AU/~CS1511/22T1/LIVE/WEEK05/

https://cgi.cse.unsw.edu.au/~cs1511/21T3/live/

POINTERS
RECAP

👏🏻👏🏻👏🏻

A pointer is another variable that stores a memory

address of a variable

This is very powerful, as it means you can modify

things at the source (this also has certain

implications for functions which we will look at in a

bit)

To declare a pointer, you specify what type the

pointer points to with an asterisk:

For example, if your pointer points to an int:

int *pointer;

type_pointing_to *name_of_ variable;

VISUALLY
WHAT IS
HAPPENING?

// Declare a variable of
// type int. called number
// Assign the value 13 to
// box
int number = 2;

// Declare a pointer
// variable that points to
// an int and assign the
// address of number to it
int *number_ptr = &number;

Memory Stack

0xFF40

0xFF44

0xFF48

0xFF4C

number = 2;

// So now:
number = 13
AND
number_ptr = 0xFF40

POINTERS 1) Declare a pointer with a * - this is where you will

specify what type the pointer points to. For example, a

pointer that stores the address of an int type variable:

2) Initialise a pointer - assign the address to the variable

with &

3) Dereference a pointer - using a * , go to the address

that this pointer variable is assigned and find what is at

that address

int *number_ptr;

*number_ptr

number_ptr = &number;

POINTERS
RECAP

THERE ARE
THREE PARTS
TO A POINTER

Declare a pointer with
a * - this is where you
will specify what type
the pointer points to

1.

2. Initialise a pointer - assign
the address to the variable

with &

3. Dereference a pointer -Using a * , go to the address that
this pointer variable is assigned and find what is at that

address

POINTERS 1) Declare a pointer with a * - this is where you will

specify what type the pointer points to. For example, a

pointer that stores the address of an int type variable:

2) Initialise a pointer - assign the address to the variable

with &

3) Dereference a pointer - using a * , go to the address

that this pointer variable is assigned and find what is at

that address

int *number_ptr;

*number_ptr

number_ptr = &number;

COMMON
MISTAKES/
SYNTAX

Let me know in the chat - will this work or not? (yay or

nay)

int number;
int *number_ptr;

*number_ptr= &number;

number_ptr = number;

number_ptr= &number;

*number_ptr= number;

CODE CODE
CODE

A SIMPLE POINTERS
EXAMPLE

A simple pointers example

pointers_simple.c

CODE CODE
CODE

ARRAYS AND POINTERS AND
FUNCTIONS - LET'S BRING IT
ALL TOGETHER...

Let's see and use some pointers. Now remember that

you can only return one thing back to main and you

can't return an array*

The problem is this:

So without using pointers, can you have a swapping

function that swaps out two things? How would you

return both of those things back to the main?

Read in an array of numbers (user will specify how many

numbers they plan to read in). Then the first number and

the last number in the array will be swapped, and the

modified array printed out again.
shufflin.c

BR
EA

K
 T

IM
E

Can you reproduce this figure using just one line, without

lifting the pen and without going back over an already

drawn line?

C has a number of standard libraries available to us

Libraries are usually .h files (header files)

We can use these libraries whenever we want to

borrow some functions by:

So far we have used

Other useful libraries we may have seen:

Sometimes we can just borrow functions instead of

writing them from scratch, like printf, scanf etc.

 Standard Input/Output Library

 Standard Library

 Mathematics Library

C LIBRARIES

GOOD FOR BORROWING A
LOT OF FUNCTIONS

GOOD REFERENCE IF YOU
ARE INTERESTED IN
LEARNING MORE ABOUT
EACH LIBRARY:

HTTPS://WWW.TUTORIALSPOINT
.COM/C_STANDARD_LIBRARY/IN
DEX.HTM

#include <library_name.h>

<stdio.h>

<stdlib.h>

<math.h>

 is a function that reads a character from

input (a single character)

Reads one byte of input

Usually returns an int (ASCII code of that

character that it read)

Can return -1 (EOF), which is useful for knowing

when to finish input

will not get its input until enter is pressed at the

end of the line (it keeps filling up a buffer until

enter is pressed)

HELPFUL
LIBRARY
FUNCTIONS
FOR CHARS
GETCHAR()

getchar()

 is a function that prints out one character

to standard output

Similar to printf("%c", character);

HELPFUL
LIBRARY
FUNCTIONS
FOR CHARS
PUTCHAR()

putchar()

 is a formatted way of reading input from

terminal, whereas reads a single

character at a time

 reads a character according to the format

specified (%d, %lf, %c), whereas just

reads a single character at a time

 takes in the format and variable address,

whereas does not take any input.

So can do many things and is easy to make

mistakes with, if you need one character at a time, it

is better to use

WHY USE
GETCHAR()
OVER
SCANF()

scanf()

getchar()

scanf()

getchar()

scanf()

scanf()

getchar()

getchar()

 is a formatted way of outputting to

terminal, whereas outputs a single

character at a time

WHY USE
PUTCHAR()
OVER
PRINTF()

putchar()

printf()

 will determine if the character is a letter

 will determine if the character is a

number

 will determine if the character is a lower

case letter

 will determine if the character is an upper

case letter

 will convert the character to a lower case

letter

 will convert the character to an upper

case letter

Some other useful functions for characters:SOME OTHER
INTERESTING
CHARACTER
FUNCTIONS

<CTYPE.H>
STANDARD LIBRARY

CHECK OUT THE REST OF THE FUNCTIONS:
HTTPS://WWW.TUTORIALSPOINT.COM/C_ST
ANDARD_LIBRARY/CTYPE_H.HTM

islower()

isalpha()

isdigit()

isupper()

tolower()

toupper()

USING
SOME OF
THESE
FUNCTIONS

STRINGS

WHAT ARE THEY?

Strings are a collection of characters that are joined

together

an array of characters!

There is one very special thing about strings in C - it is

an array of characters that finishes with a

This symbol is called a null terminating character

It is always located at the end of an array, therefore

an array has to always be able to accomodate this

character

It is not displayed as part of the string

It is a placeholder to indicate that this array of

characters is a string

It is very useful to know when our string has come to

an end, when we loop through the array of characters

\0

HOW DO
WE
DECLARE A
STRING?

WHAT DOES IT LOOK
LIKE VISUALLY?

Because strings are an array of characters, the array

type is char.

To declare and initialise a string, you can use two

methods:

 //the more convenient way
char word[] = "hello";
//this is the same as'\0':
char word[] = {'h','e','l','l','o','\0'};

0 1 2 3 4 5

char char char char char char

\0eh l l 0

array[] - the array that the string will be stored into

length - the number of characters that will be read in

stream - this is where this string is coming from - you

don't have to worry about this one, in your case, it will

always be stdin (the input will always be from

terminal)

There is a useful function for reading strings:

The function needs three inputs:

HELPFUL
LIBRARY
FUNCTIONS
FOR
STRINGS
FGETS()

fgets(array[], length, stream)

// Declare an array where you will place the
string that you read from somewhere
char array[MAX_LENGTH];
// Read in the string into array of length
MAX_LENGTH from terminal input
fgets(array, MAX_LENGTH, sdin)

 fgets() stops reading when either length-1 characters

are read, newline character is read or an end of file is

reached, whichever comes first

Using the keyword, you can continuously get string

input from terminal until Ctrl+D is pressed
HOW DO I
KEEP
READING
STUFF IN
OVER AND
OVER
AGAIN?

NULL

array[] - the array that the string is be stored in

stream - this is where this string will be output to, you

don't have to worry about this one, in your case, it will

always be stdout (the output will always be in

terminal)

Another useful function to output strings:

The function needs two inputs:

HELPFUL
LIBRARY
FUNCTIONS
FOR
STRINGS
FPUTS()

fputs(array[], stream)

// Declare an array where you will place the
string that you read from somewhere
char array[MAX_LENGTH];
// Read in the string into array of length
MAX_LENGTH from terminal input
fgets(array, MAX_LENGTH, sdin)
//Output the array now
fputs(array, stdout)

 gives us the length of the string (excluding

the '\0'

 copy the contents of one string to another

 attach one string to the end of another

(concatenate)

 compare two strings

 find the first or last occurance of a

character

Some other useful functions for strings:SOME OTHER
INTERESTING
STRING
FUNCTIONS

<STRING.H>
STANDARD LIBRARY

CHECK OUT THE REST OF THE FUNCTIONS:
HTTPS://WWW.TUTORIALSPOINT.COM/
C_STANDARD_LIBRARY/STRING_H.HTM

strcpy()

strlen()

strcat()

strchr()

strcmp()

USING
SOME OF
THESE
FUNCTIONS

STRINGS

Feedback please!
I value your feedback and use to pace the lectures and improve your overall

learning experience. If you have any feedback from today's lecture, please

follow the link below. Please remember to keep your feedback constructive,

so I can action it and improve the learning experience.

https://www.menti.com/1qehxnzw39

pointers_basic.c

shuffling.c

POINTERS
RECAP

get_char.c

char_functions.c

CHAR
FUNCTIONS

string_functions.c

STRINGS

WHAT DID WE LEARN TODAY?

RE
A

C
H

 O
U

T

cs1511@cse.unsw.edu.au

ADMIN QUESTIONS

Check out the forum

CONTENT RELATED
QUESTIONS

