
COMP1511 PROGRAMMING FUNDAMENTALS

LECTURE 8
Recap 2D arrays and starting to look at pointers

O
N

 T
U

ES
D

A
Y

..
.

LAST LECTURE...

Went back to reinforce 1D arrays

Looked at 2D arrays (which make up

a grid and allow us to do some pretty

cool stuff)

TH
IS

 L
EC

TU
RE

..
.

TODAY

Revisiting scanf() and EOF

Recap of 2D arrays and going back

 to the ice-cream hunt question (with

diagrams this time!)

Introducing pointers (they point)

another type of variable that

holds an address of a variable

WHERE IS THE CODE?

Live lecture code can be found here:
HTTPS://CGI.CSE.UNSW.EDU.AU/~CS1511/22T1/LIVE/WEEK04/

https://cgi.cse.unsw.edu.au/~cs1511/21T3/live/

ARRAY OF
ARRAYS

A RECAP
col 2 col 3col 1

row 0

row 1

row 2

col 0

int array[3][4];

array[0][0] array[0][1] array[0][2] array[0][3]

array[1][0] array[1][1] array[1][2] array[1][3]

array[2][0] array[2][1] array[2][2] array[2][3]

For example, let's say we declare an array of arrays:

Visually it looks like this and showing how to access

each of the grid elements:

ARRAY OF
ARRAYS

A RECAP: OUR
PROBLEM FROM
TUESDAY

I am on the hunt for ice-cream (what else is new?). I

I would like to explore a certain area in Kinsgsford to

see if I can find ice-cream, on 10x10 grid. I am able to

move around this section of Kingsford (left, right, up and

down) and want to explore as many places in this section

as possible, so as not to miss an ice-cream opportunity. I

always start in the bottom right corner. Once I have

explored the section in Kingsford, or I go to the same

place more than once - it will be time to go home.

We can make this problem more complex if we have time

with either Tom or Tammy deciding to join me on the

hunt!

 ice_cream_hunt.c

ARRAY OF
ARRAYS

LET'S GO BACK TO
OUR PROBLEM
FROM TUESDAY AND
DIAGRAM IT UP

col 2 col 3col 1

row 0

col 0

 ice_cream_hunt.c

col 6 col 7col 5col 4 col 8 col 9

row 1

row 2

row 3

row 4

row 5

row 6

row 7

row 8

row 9

LET'S
WELCOME
POINTERS
INTO THE MIX

������

A pointer is another variable that stores a memory

address of a variable

This is very powerful, as it means you can modify

things at the source (this also has certain

implications for functions which we will look at in a

bit)

To declare a pointer, you specify what type the

pointer points to with an asterisk:

For example, if your pointer points to an int:

int *pointer;

type_pointing_to *name_of_ variable;

WHY DO WE
NEED
POINTERS?

Pointers solve two common problems:

Remember how I said that when we pass some

inputs into a function it actually makes a copy of

that variable? Well, pointers kind of allow us to

share information easier between sections of

code without all that copying

Pointers also allow us to play with more complex

data structures such as linked lists - coming in

Week 7 and will really help with pointers :)

THERE ARE
THREE PARTS
TO A POINTER

Declare a pointer with
a * - this is where you
will specify what type
the pointer points to

1.

2. Initialise a pointer - assign
the address to the variable

with &

3. Dereference a pointer -Using a * , go to the address that
this pointer variable is assigned and find what is at that

address

VISUALLY
WHAT IS
HAPPENING? // Declare a variable of

// type int. called box
// Assign the value 6 to
// box
int box = 6;

// Declare a pointer
// variable that points to
// an int and assign the
// address of box to it
int *box_ptr = &box;

Memory Stack

0xFF40

0xFF44

0xFF48

0xFF4C

box = 6;

printf("The value of the
variable box is located at
address %p is %d\n", box_ptr,
*box_ptr);

VISUALLY
WHAT IS
HAPPENING?

Memory Stack

0xFF40

0xFF44

0xFF48

0xFF4C

box = 6;

YOU CAN
HAVE A
POINTER TO
DIFFERENT
VARIABLES

WHEN YOU DECLARE A
POINTER, YOU WILL
SPECIFY THE TYPE
THAT IT POINTS TO
FOLLOWED BY *

// Declare a variable of type int called box
// Assign the value 6 to box
int box = 6;

// Declare a pointer variable that points to
// an int and assign the address of box to it
int *box_ptr = &box;

// Declare a variable of type double called box
// Assign the value 3.2 to box
double box = 3.2;

// Declare a pointer variable that points to
// a double and assign the address of box to it
double *box_ptr = &box;

// Declare a variable of type char called box
// Assign the value 'c' to box
char box = 'c';

// Declare a pointer variable that points to
// a double and assign the address of box to it
char *box_ptr = &box;

INITIALISING
POINTERS
WHEN YOU
DON'T HAVE
ANYTHING TO
INITIALISE
THEM WIHT
YET

NULL POINTER

Pointers are just another type of variable, and just

like our other variables it should be initialised after it

is declared.

Generally, we will initialise a pointer, by pointing it at

a variable

If we need to initialise a pointer that is not yet

pointing to anything, we use:

This is a special word in a C library which is #define

It is basically a value of 0, but for a pointer, we use

this keyword NULL

NULL

WHAT HAPPENS
IF YOU FORGET
TO EVER GIVE
THIS NULL
POINTER AN
ACTUAL
ADDRESS WITH
SOMETHING AND
THEN TRY AND
DEREFERENCE A
NULL POINTER?
COMPILES THAN CHAOS...

TIME TO
CODE AND
SEE A
POINTER IN
ACTION!
pointers_intro.c

Best way to learn about pointers is to start using

them

POINTERS
AND
FUNCTIONS
pointers_function.
c

This is one of the benefits of pointers (yes, you don't

have to use them, but it makes your solutions so much

easier and more elegant!)

If we pass a pointer into a function instead of a

normal variable, it can modify at the direct

address of our variable (no need to return the

result, can modify multiple things if needed etc)...

So if you pass a normal variable to a function,

changing that variable in the function will have no

effect on that variable in the main (because you are

changing a copy)

However, if you pass it a pointer, it can make changes

directly that will also reflect back in the main function

POINTERS
AND
ARRAYS
IS AN ARRAY A
POINTER?

They are not the same

An array is not a pointer - they are two different

things!!

However, an array name is a constant pointer to the

array (the subtle differences!)

You may have heard the term that the array

decays to a pointer to the first element of the

array by the compiler

This means that the name of the array always points

to the first element of the array.

This means that we can pass an array to a function

just by giving it the whole array name only

array_pointer.c

POINTERS
AND
ARRAYS
IS AN ARRAY A
POINTER?

array_pointer.c

BR
EA

K
 T

IM
E

CODE CODE
CODE

ARRAYS AND POINTERS AND
FUNCTIONS - LET'S BRING IT
ALL TOGETHER...

Let's see and use some pointers. Now remember that

you can only return one thing back to main and you

can't return an array*

The problem is this:

So without using pointers, can you have a swapping

function that swaps out two things? How would you

return both of those things back to the main?

Read in an array of numbers (user will specify how many

numbers they plan to read in). Then the first number and

the last number in the array will be swapped, and the

modified array printed out again.
shufflin.c

Feedback please!
I value your feedback and use to pace the lectures and improve your overall

learning experience. If you have any feedback from today's lecture, please

follow the link below. Please remember to keep your feedback constructive,

so I can action it and improve the learning experience.

https://www.menti.com/sy4jf115wu

WHAT DID WE LEARN TODAY?

ice_cream_hunt.c

2D ARRAY
RECAP

pointers_intro.c

pointers_functions.c

array_pointer.c

the_shuffle.c

INTRO TO
POINTERS

RE
A

C
H

 O
U

T

cs1511@cse.unsw.edu.au

ADMIN QUESTIONS

Check out the forum

CONTENT RELATED
QUESTIONS

