COMP1511 PROGRAMMING FUNDAMENTALS

LECTURE 6

| @ ARRAYS

LAST LECTURE...

ON TUESDAY...
e Talked about good style/bad style

e Functions - what/how/why?

THIS LECTURE...

TODAY...

e [ooking back at some functions

e Starting to look at arrays

WHERE IS THE CODE?

HTTPS://CGI.CSE.UNSW.EDU.AU/~CS1511/22T1/LIVE/WEEKO03/

https://cgi.cse.unsw.edu.au/~cs1511/21T3/live/

FU NCTIONS o A f:nction is a bI:ck ofkstatements that
performs a specific tas
RECAP

WHAT?

FUNCTIONS
RECAP

WHY?

I

m

orove readability of the code

orove reusability of the code

Debugging is easier (you can narrow down

which function is causing issues)

Reduces size of code (you can reuse the

functions as needed, wherever needed)

FU NCTIONS e Predefined standard library functions (built-
in)
RECAP o printf(), scanf() inside stdio.h

e User defined function with syntax:

HOW? function_name () {
BLOCK OF CODE (Set of instructions for the

function)

e return_type - can be any data type such as int,
double, char, etc (CAN'T BE ARRAY)

e function_name - whatever your heart desires,
should be descriptive

e arguments - what are the inputs into the function

e Block of Code - set of instructions exercuted when

call is made to the function

return type: name of
What type function: arguments:

does this What will | name| | What am | giving
function return?} | my function? my function?

input/

RECAP
FUNCTIONS

add (
sum;

number_one, number_ two) {

sum = number one + number two;

return sum;
} &‘\To finish | return an int (sum),

which is what | said | would
return when | wrote my
function

RE CAP e You must have a prototype above your main to let

everyone know the function is defined and is

FUNCTIONS coming

PROTOTYPE

REVISITI NG e Qur C file is stored on the hard drive

e Qur Compiler compiles the code into another file that

M EMO RY the computer can read

e When we execute code, the CPU will actually process

the instructions and perform basic arithmetic, but the
heap RAM will keep track of all the data needed in those

instructions and operations, such as our variables.

{

e Reading and writing to variables will change the
stack numbers in RAM

e Memory is divided into the stack and the heap

global/static | |
variable e The stack is an ordered stack and the heap is a random

free for all - insert something where you can find

code space for it.

REVISITI NG e Stack memory is where relevant information about
your program goes:
MEMORY o which functions are called,

o what variables you created,

e Once your block of code finishes running {}, the

heap function calls and variables will be removed from

the stack (it's alive!)

e [t means at compile time we can allocate stack

{

stack
memory space (not at run time)
global/static e The stack is controlled by the program NOT BY THE
variable
developer
code e The heap is controlled by the developer (more on

this in a few weeks) and can be changed at run time

MEMORY IS
IMPORTANT

WITHOUT MEMORY,
WE CAN'T REALLY
RUN ANYTHING

e Think of your own memory and what it allows

you to do.

e Computer memory is important to consider when

you are writing your code (we don’t focus on this

in 1511, but you will in later courses)

 The more you waste memory, the slower your

program gets... you will learn a

later computing courses! In 15

the wastage :)

| about this in

1 we don't mind

How Do * |n this course we will learn about two pretty cool

data structures:

WE o Arrays (NOW!)
E F F I CI E NTLY o Linked Lists (after flexibility week)
so LVE e There are of course other data structures that

you will learn about in further computing courses

PROBL EMS? e Choosing the right structure to house our data

depends on what the problem is and what you

DIFFERENT are trying to achieve. Some structures lend
PROBLEMS HAVE themselves better to certain types of problems.
DIFFERENT

OPTIMUM

SOLUTIONS

so e APRETTY IMPORTANT DATA TYPE!

e A collection of variables all of the same type
WITHOUT

FURTHER truc

o Think about how this is very different to a

ADO e We want to be able to deal with this collection as

a whole entity, where we can:

o Access any variable in this col

THE ARRAY o Change any variable in this co

ection easily

lection easily

so WHAT e | et's say | want to record the daily ice cream

consumption for a week

KI N Ds OF e What about the daily temperatures for a year?
PROBLEMS e The amount of time daily that | spend walking my

DO ARRAYS [l

SOLVE?

Can you think of other examples?

NOTICE THAT EACH OF
THESE COLLECTIONS
HAS THE SAME TYPE OF
VARIABLE | AM
RECORDING

ARRAY * If we group our data type as a collection, for

example a collection of integers:

(VISUALLY) e We can access them as a group(collection)

e We can loop through and access each individual

NOTE: ALL ELEMENTS element of that collection
OF AN ARRAY MUST BE

OF THE SAME DATA

TYPE (HOMOGENOUS) W
0 1 2 3 4 S 6

this array holds 7 integers
You can access elements of an array by

referring to their index

WHY DO WE
NEED AN
ARRAY?

LET'S LOOK AT AN
EXAMPLE PROBLEM

e [et's say | am tracking my ice cream

consumption over a week (without arrays)

int
int
int
int
int
int

int

mon
tues
wedn
thur
fri
sat
sun

2

s
4

-

o U W W e
b

if (mon >= 3){
printf('""Too much

¥

if (tue >= 3) {

ice cream\n");

WHY DO WE
NEED AN
ARRAY?

LET'S LOOK AT AN
EXAMPLE PROBLEM

e What if | am tracking this over the month or over
a year?
o Will | need 30 variables/365 variables?

THIS IS A
GREAT

PLACETO 1. Declaringlan arrgy
U SE AN int ice_cream_consum[7];

Type of data Name of the
stored in array array

Number of items
in the array

ARRAY...

// 2. Declaring and Initialise the array
// Note that once you declare an array,
// you can't initialise it in this way
int i1ce_cream consum[7] = {3, 2, 1, ...};

HOW DO WE DECLARE
AN ARRAY

To initialise, open curly bracket and separate values

by comma. If you have empty {}, it means to intialise
the whole array to O

ARRAY e 50 let’'s say we have this declared and initialised:
(VISUALLY)

int ice_cream consum[7] = {3, 2, 1, 2, 1, 3, 5};

e This is what it looks like visually:

Nt
DECLARING AND

INITIALISING AN 3
ARRAY

this array holds 7 integers
Note that indexing starts at 0

ARRAY e You can access any element of the array by
referencing its index

(VISUALLY) e Note, that indexes start from O

e Trying to access an index that does not exist, will

ACCESSING ARRAY result in an error

ELEMENTS int ice cream consum[7] = {3, 2, 1) 2, 1, 3, 5};
int int int Nt int int
T1 T 1VTT
0 1 2 3 5 o

If I wanted the third element of the array
The index would be 2, so to access it:

ice_cream_consum|2]

USI NG e You can't printf() a whole array, but you can print
ARRAYS

individual elements (consider how you could go
through the array to print out every element...)
e You can't scanf() a whole array, i.e. a line of user

CLOSER LOOK input test into an array, but you can can scanf()

individual elements (think how to do every element

in an array...)

USING
ARRAYS

CLOSER LOOK

int ice _cream consum[7] = {3, 2, 1, 2, 1, 3,

int 1 = 0;
while (i < 7){
printf(" ", ice cream _consum[i]);

i++;

Start at index O (first entry into while loop)
ice_cream_consum]0]
print what is inside index 0

Nt Nt Nt Nt Nt Nt Nt

TLLLIT

USING int ice cream consum[7] = {3, 2, 1, 2, 1, 3, 5};
ARRAYS o
while (i < 7){

printf(" ", ice cream_consum[i]);

i++;

CLOSER LOOK }

increase index by 1
ice_cream_consum|1]
print what is inside index 1

Nt Nt Nt Nt Nt Nt Nt

TIIT

USING int ice cream consum[7] = {3, 2, 1, 2, 1, 3, 5};
ARRAYS [
while (i < 7){

printf(" ", ice cream_consum[i]);

i++;

CLOSER LOOK }

increase index by 1
ice_cream_consum|2]
print what is inside index 2

Nt Nt Nt Nt Nt Nt Nt

T LT

USING int ice cream consum[7] = {3, 2, 1, 2, 1, 3, 5};
ARRAYS [
while (i < 7){

printf(" ", ice cream_consum[i]);

i++;

CLOSER LOOK }

increase index by 1
ice_cream_consum|3]
print what is inside index 3

Nt Nt Nt iNt Nt Nt Nt

T[T

USING int ice_cream consum[7] = {3, 2, 1, 2, 1, 3, 5};
ARRAYS o
while (i < 7){

printf(" ", ice cream_consum[i]);

i++;

CLOSER LOOK }

increase index by 1
ice_cream_consum/[4]
print what is inside index 4

Nt Nt Nt iNt Nt Nt Nt

TIT

|

USING int ice cream consum[7] = {3, 2, 1, 2, 1, 3, 5};
ARRAYS [
while (i < 7){

printf(" ", ice cream_consum[i]);

i++;

CLOSER LOOK }

increase index by 1
ice_cream_consum]|5]
print what is inside index 5

Nt Nt Nt Nt Nt Nt Nt

T [

USING int ice_cream consum[7] = {3, 2, 1, 2, 1, 3,
ARRAYS T
while (i < 7){

printf(" ", ice cream_consum[i]);

i++;

CLOSER LOOK }

increase index by 1
ice_cream_consum|6]
print what is inside index 6

Nt Nt Nt Nt Nt Nt Nt

TIIIT

BREAK TIME

TIME TO STRETCH

You have two eggs in a 100-story building. You want to find out what

floor the egg will break on, using the least number of drops.

PROBL EM e | meet my friend for ice cream every day for a

week (I don't drink coffee)... We want to be able to

so LVI NG track how many ice creams in total we all

TIME consumed in a week, and also who ate the most
ice cream in that week!

HOORAY! ice cream total.c

Feedback please!

| value your feedback and use to pace the lectures and improve your overall
learning experience. If you have any feedback from today’s lecture, please
follow the link below. Please remember to keep your feedback constructive,

so | can action it and improve the learning experience.

https://www.menti.com/o1v9h7c3j8

WHAT DID WE LEARN TODAY?

FUNCTIONS EXPLORING
RECAP ARRAYS
functions_recap.c ice_cream.c

ice_cream_total.c

REACH OUT

CONTENT RELATED

QUEST
Check out t

ONS

ne forum

ADMIN QUESTIONS

cs1511@cse.unsw.edu.au

