
COMP1511 PROGRAMMING FUNDAMENTALS

LECTURE 4
Loop the loop

LA
ST

 L
EC

TU
RE

..
.

ON TUESDAY

Conditionals - running out code based

on some sort of condition being met

More complex IF statements

Introducing the struct

IN
 T

H
IS

 L
EC

TU
RE

TODAY...

Let's loop the loop while()

Live lecture code can be found here:
HTTPS://CGI.CSE.UNSW.EDU.AU/~CS1511/22T1/LIVE/WEEK02/

WHERE IS THE CODE?

https://cgi.cse.unsw.edu.au/~cs1511/21T3/live/

Any time your program needs to keep doing

something (repeating the same or similar

action) until something happens and you may

not know how many times that will be in

advance

Can you think of some examples in real life?

 While there are songs in my playlist, keep

playing the songs

WHEN DO
WE NEED
TO LOOP?

REPETITION

C normally executes in order, line by line

(starting with the main function after any #

commands have been executed)

if statements allow us to “turn on or off”

parts of our code

But up until now, we don’t have a way to

repeat code

Copy-pasting the same code again and again is

not a feasible solution

Let's see an example where it is inefficient to

copy and paste code...

WHILE

REPETITIVE TASKS
SHOULDN’T
REQUIRE
REPETITIVE
CODING

 loops - can commonly be controlled

 in three ways:

Count loops

Sentinel loops

Conditional loops

WHILE

WHILE
SOMETHING IS
TRUE, DO
SOMETHING

while()

// Expression is checked at the start
// of every loop

while (expression) {
 // This will run again and again until
 // the expression is evaluated as false
 }
// when the program reaches this }, it will
// jump back to the start of the while loop

WHILE

CONTROL THE
WHILE LOOP

// 1. Initialise the loop control variable
// before the loop starts

while (expression) { // 2. Test the loop
 // control variable,
 // done within the
 // (expression)

 // 3. Update the loop control variable
 // usually done as the last statement
 // in the while loop
}

TO
INFINITY
AND
BEYOND

TERMINATING
YOUR LOOP

while (1 < 2) {
 printf("It is time for some Messina ice-
 cream");
}

It’s actually very easy to make a program that

goes forever

Consider the following while loop:

CONTROL
THE WHILE
LOOP

COUNT LOOPS // 1. Declare and initialise a loop control
variable just outside the loop
int count = 0;

while (count < 5) { // 2. Test the loop
 // control variable
 // against counter
 printf("It is time for some Messina ice-
 cream");
}

Use a variable to control how many times a

loop runs - a "loop counter"

It’s an that’s declared outside the loop

It’s “termination condition” can be checked in

the while expression

It will be updated inside the loop

int

CONTROL
THE WHILE
LOOP

COUNT LOOPS

int scoops = 0;
int sum = 0;

// 1. Declare and initialise a loop control
variable just outside the loop
int count = 0;

while (count < 5) { // 2. Test the loop
 // control variable
 // against counter
 printf("How many scoops of ice cream have
 you had?");
 scan("%d", &scoops);
 sum = sum + scoops;
 printf("You have now had %d serves of ice-
 cream, with a total of %d scoops\n",
 scoops, sum);
 count = count + 1; // 3. Update the loop
 // control variable
}

SENTINEL
VALUES

WHAT IS A
SENTINEL?

When we use a loop counter, we assume that

we know how many times we need to repeat

something

Consider a situation where you don’t know the

number of repetitions required, but you need

to repeat whilst there is valid data

A sentinel value is a ‘flag value’, it tells the loop

when it can stop…

For example, keep scanning in numbers until an

odd number is encountered

We do not know how many numbers we will

have to scan before this happens

We know that we can stop when we see an

odd number

CONTROL
THE WHILE
LOOP

SENTINEL LOOPS

Sentinel Loops: can also use a variable to

decide to exit a loop at any time

We call this variable a "sentinel"

It's like an on/off switch for the loop

It is declared and set outside the loop

It’s “termination condition” can be checked in

the while expression

It will be updated inside the loop (often

attached to a decision statement)

CONTROL
THE WHILE
LOOP

COUNT LOOPS

int scoops = 0;
int sum = 0;

// 1. Declare and initialise a loop control
variable just outside the loop
int end_loop = 0;

while (end_loop == 0) { // 2. Test the loop
 // control variable
 printf("Please enter number of scoops to
 add to your daily consumption: ");
 scan("%d", &scoops);
 if (scoops >= 0) {
 sum = sum + scoops;
 } else {
 end_loop = 1; // 3. Update the loop
 // control variable
 }
}

CONTROL
THE WHILE
LOOP

CONDITIONAL
LOOPS

Conditional Loops: can also use a condition to

decide to exit a loop at any time

This is called conditional looping

Also do not know how many times we may

need to repeat.

We will terminate as a result of some type of

calculation

CONTROL
THE WHILE
LOOP

COUNT LOOPS

int scoops = 0;

// 1. Declare and initialise a loop control
// variable
// Since I want the sum to be as close to 100
// as possible, that is my control condition
int sum = 0;

while (sum < 100) { // 2. Test the loop
 // condition
 printf("Please enter number of scoops to
 add to your daily consumption: ");
 scan("%d", &scoops);

 // 3. Update the loop control variable
 sum = sum + scoops;
}

ACTION
TIME

CODE DEMO

While loop with a counter:

While loop with a sentinel:

While loop with a condition:

while_count.c

while_sentinel.c

while_condition.c

BR
EA

K
 T

IM
E

TIME TO STRETCH
There are 50 motor bikes, each has a petrol tank

holding enough petrol to go 100km. Using these motor

bikes, what is the maximum distance you can go?

WHILE
INSIDE A
WHILE

PUTTING A LOOP
INSIDE A LOOP

If we put a loop inside a loop . . .

Each time a loop runs

It runs the other loop

The inside loop ends up running a LOT of times

PROBLEM
TIME

PRINT OUT A GRID
OF NUMBERS

Print out a grid of numbers:

Break down the problem…

Get it down to a component that you can do…

 1 2 3 4 5

 1 2 3 4 5

 1 2 3 4 5

 1 2 3 4 5

 1 2 3 4 5

PROBLEM
TIME

PRINT OUT A
PYRAMID OF
NUMBERS

What if we now print out a half pyramid of

numbers:

Break down the problem…

Get it down to a component that you can do…

 1

 1 2

 1 2 3

 1 2 3 4

 1 2 3 4 5

Feedback please!
I value your feedback and use to pace the lectures and improve your overall

learning experience. If you have any feedback from today's lecture, please

follow the link below. Please remember to keep your feedback constructive,

so I can action it and improve the learning experience.

https://www.menti.com/fwucrz4rwx

while_counter.c

LOOP THE
LOOP
WHILE

(COUNTER)

while_sentinel.c

LOOP THE
LOOP
WHILE

(SENTINEL)

while_condition.c

LOOP THE
LOOP
WHILE

(CONDITION)

grid: print_grid.c

pyramid:

print_pyramid.c

LOOP INSIDE A
LOOP (CAN'T
GET ENOUGH
OF A LOOP)

WHAT DID WE LEARN TODAY?

RE
A

C
H

 O
U

T

cs1511@cse.unsw.edu.au

ADMIN QUESTIONS

Check out the forum

CONTENT RELATED
QUESTIONS

