
COMP1511 PROGRAMMING FUNDAMENTALS

LECTURE 3
Getting harder...

More complex IF statements,
A closer look at scanf(),
Breaking things, and
Learning about STRUCTS

LA
ST

 L
EC

TU
RE

..
.

LAST WEEK, WE TALKED:

Welcome and Introductions

Started looking at C

Our first Hello! program

Compiling and running your code

 and

Variables (. , ,)

Maths :)

Basic IF statements

int chardouble

printf() scanf()

IN
 T

H
IS

 L
EC

TU
RE

..
.

TODAY...

More complex IF statements

Logical Operators

Chaining and

Breaking things

Testing things

if else

Live lecture code can be found here:
HTTPS://CGI.CSE.UNSW.EDU.AU/~CS1511/22T1/LIVE/WEEK02/

WHERE IS THE CODE?

https://cgi.cse.unsw.edu.au/~cs1511/21T3/live/

Relational Operators work with pairs of

numbers:

 < less than

 > greater than

 <= less than or equal to

 >= greater than or equal to

 == equals

 != not equal to

All of these will result in 0 if false and a 1 if

true

HOW DO WE
ASK GOOD
QUESTIONS?
RELATIONAL
OPERATORS

NOTICE: IN C, WE HAVE == AND =

THESE ARE NOT THE SAME AND DO
NOT MEAN WHAT YOU ARE USED TO
IN MATHS!

USING = WHEN YOU ASSIGN
VALUES
USING == WHEN YOU ARE
CHECKING FOR EQUIVALENCE

True (1) or False (0)?SOME
EXAMPLES
LET'S TRY THIS
OUT...

 AND: if both expressions are true then the

condition is TRUE (equates to 1 if both sides

equate to 1)

 OR: if any of the two expressions are true

then the condition is TRUE (is 1 if either side is

1)

 NOT: reverse the expression (is the

opposite of whatever the expression was)

The first two are used between two questions

(expressions):

This is used in front of an expression:

I LIKE
QUESTIONS,
HOW DO I
ASK TWO
QUESTIONS
AT THE
SAME TIME?
LOGICAL
OPERATORS

True (1) or False (0)?SOME
EXAMPLES
LET'S TRY THIS
OUT...

A user rolls two dice and tell us the number on

each of the rolled die. Our program will add the die

numbers together and check them against a target

number that only the program knows. It will then

report back whether the total of the dice was

higher, equal or lower than the secret number.

LET'S PUT
OUR SKILLS
TO THE TEST

LET'S CODE! (SOLVE
THE PROBLEM FIRST)

A user will roll two dice - done outside of our

program

Take in the result of each die - how do we

read input?

Add the die numbers together

Check them against a target number - based

on steps 4 and 5, it looks like we need to make

a decision - therefore IF statement

Output if total of the dice was higher, equal or

lower than the target number - output based

on the decision that we made

1.

2.

3.

4.

5.

BREAKING DOWN
THE PROBLEM INTO
A SUM OF SIMPLE
PARTS

A user rolls two dice and tell us

the number on each of the rolled

die. Our program will add the die

numbers together and check

them against a target number

that only the program knows. It

will then report back whether the

total of the dice was higher, equal

or lower than the secret number.

Take in the result of each die - how do we read input?

Read input of die 1

 Read input of die 2

Add the die numbers together

 sum = die1+die2

Check them against a target number - based on steps 3

and 4, it looks like we need to make a decision - therefore

IF statement

 Define the target number

Output if total of the dice was higher, equal or lower than

the target number. - output based on the decision that we

made

 Is sum greater than target number?

 Is sum less than target number?

 Is sum equal to the target number?

1.

a.

b.

2.

3.

4.

BREAKING DOWN
THE PROBLEM INTO
A SUM OF SIMPLE
PARTS

A user rolls two dice and tell us

the number on each of the rolled

die. Our program will add the die

numbers together and check

them against a target number

that only the program knows. It

will then report back whether the

total of the dice was higher, equal

or lower than the secret number.

Switch over toVLab

Open Terminal

Open a new file:

1.

2.

3.

Feel free to follow along with lecture coding, or

you can also find the code here:

NOW LET'S
CODE!

gedit dice_checker.c &

IF /
ELSE IF /
ELSE
LET'S LOOK AT SOME
CODE AND A DEMO

IF statements with logical operators:

IF statements with char:

Harder IF logic and chaining if and else together:

if_logic.c

lower.c

dice_checker.c

BREAKING
THINGS

Try and counter for these breaks!

Important to have good error messages:

Tells the user exactly what has gone wrong

How can they fix it?

What is happening!?

It is really good practice to think about how it is

possible to break your code? What can go wrong?

BR
EA

K
 T

IM
E

HOW DOES
SCANF()
REALLY
WORK?
A MAGICAL
POWER...

Gives us the ability to scan stuff in from the

terminal (standard input)

We have to tell the computer what we expect to

scanf() - is it an , , or ?

But since scanf() is a function does it return

something?

Yes, scanf() returns the number of input values

that are scanned

If there is some input failure or error then it

returns EOF (end-of-file) - we will look at this

more tomorrow!

This is useful to check for any errors

int double char

DID YOU
NOTICE HOW
A NEW LINE
IS READ BY
SCANF()?
BECAUSE /N IS A
CHARACTER ON THE
ASCII TABLE: 10 LF
(LINE FEED)

You may have noticed that scanf("%d", &number) is

able to ignore anything other than a number when it

scans in - this is because whitespace is not a number

and the function looks for a number

But did you notice that this is not the case for

This is because a new line (/n) is a character on the

ASCII table, which means it is still a valid character

to scan in (It is number 10 LF if you are interested!)

To fix this, we can tell scanf() to ignore all

preceeding whitespace by using a special magic trick:

scan("%c", &character);

scan(" %c", &character);

ORGANISING
DIFFERENT
TYPES INTO
ONE
RELATED
WHOLE
USER DEFINED DATA
TYPE

Structures…. Or (as they are known in

C!)

Structs (short for structures) are a way to create

custom variables

Structs are variables that are made up of other

variables

struct

struct

STRUCTURES
WHAT? WHY?
EXAMPLES?

What happens if you wanted to group some

variables together to make a single structure?

Why do we need structures?

Helps us to organise related but different

components into one structure

Useful in defining real life problems

What are some examples in real life where some

things go together to make a single component?

HOW DO WE
CREATE A
STRUCT?

Define the struct (outside the main)

Declare the struct (inside your main)

Initialise the struct (inside your main)

To create a struct, there are three steps:

1.

2.

3.

1. DEFINING
A STRUCT

WHAT AM I
GROUPING
TOGETHER INTO ONE
WHOLE? LET'S USE
AN EXAMPLE OF A
COORDINATE POINT

Because structures are a variable that we have

created, made up of components that we decided

belong together, we need to define what the struct

(or structure is). To define a struct, we define it

before our main function and use some special syntax.

For example, using the coordinate point example, to

declare a variable, cood_point, of type struct

coordinate

struct struct_name {
 data_type variable_name_member;
 data_type variable_name_member;
 ...
 };

1. DEFINING
A STRUCT

WHAT AM I
GROUPING
TOGETHER INTO ONE
WHOLE? LET'S USE
AN EXAMPLE OF A
COORDINATE POINT

For example, using the coordinate point example, to

make a structure called coordinate, that has two

members - the x_coordinate and the y_coordinate:

struct coordinate {
 int x_coordinate;
 int y_coordinate;
 };

2. DECLARING
A STRUCT

INSIDE YOUR MAIN

To declare a struct, inside the main function (or

wherever you are using the structure - more on this

later)…

For example, using the coordinate point example, to

declare a variable, cood_point, of type struct

coordinate

struct struct_name variable_name;

struct coordinate cood_point;

3.INITIALISE
A STRUCT

INSIDE YOUR MAIN

We access a member by using the dot operator .

For example, using the coordinate point example, with

variable name: cood_point, trying to access the x

coordinate:

variable_name.variable_name_member;

cood_point.x_coordinate;

DEFINE
DECLARE
INITIALISE

LET'S SEE IT
ALL
TOGETHER
FOR A
COORDINATE
POINT

1.
2.
3.

2. DECLARE

Inside the main

function

3. INITIALISE

Inside the main

function

1. DEFINE

Inside the main

function

// Declare structure with
variable name

struct coordinate cood_point;

// Define a structure for a
coordinate point

struct coordinate {
 int x_coordinate;
 int y_coordinate;
 };

// Access stuct member to
assign value

cood_point.x_coordinate = 3;
cood_point.y_coordinate = 5;

You can see structs in action (I feel like we are

in some sort of epic film here):
LET'S SEE
STRUCTS
IN ACTION

CODE DEMO

struct_intro.c

Feedback Please
I value your feedback and use to pace the lectures and improve your overall

learning experience. If you have any feedback from today's lecture, please

follow the link below. Please remember to keep your feedback constructive,

so I can action it and improve the learning experience .

https://www.menti.com/m7h52ab7av

WHAT DID WE LEARN TODAY?

upper.c

LOGICAL
OPERATORS
AND IF WITH

CHAR

dice_checker

CHAINING
IF/ELSE AND

ERROR
CHECKING

what should I test my

code with?

TESTING

struct_intro.c

SAY HELLO TO
STRUCTS

RE
A

C
H

 O
U

T

cs1511@cse.unsw.edu.au

ADMIN QUESTIONS

Check out the forum

CONTENT RELATED
QUESTIONS

