
Lecture 16

COMP1511 PROGRAMMING FUNDAMENTALS

A very brief intro to recursion (useful for later

courses, sometimes faster working)

More linked lists

Intro to Abstract Data Types:

Stacks

YESTERDAY...

COMP1511 Programming Fundamentals

Recursion

The last lecture with new

material!

Please use the poll on this week's

weekly announcement to let me

know what kinds of topics you

would like to cover in our revision

lecture next week!

TODAY...

COMP1511 Programming Fundamentals

https://cgi.cse.unsw.edu.au/~cs1511/21T3/live/Week09/

WHERE IS THE
CODE?
LIVE LECTURE CODE
CAN BE FOUND
HERE:

https://cgi.cse.unsw.edu.au/~cs1511/21T3/live/

RECURSION
WHAT IS IT?

Hope noone is feeling sick yet

Just giving you the vibe of recursion

Think of a function that calls itself again and

again and again until an end condition has

been met

RECURSION
WHAT IS IT?

Recursion is used all around us

It is a different way of thinking and solving

problems

You basically have to go backwards to go

forwards, and if you are confused, welcome

to your first taste of recursion - it does get

better!

SUM OF A LINKED LIST
AN EXAMPLE OF CONVERTING TO A RECURSIVE FUNCTION

Let's say we have a linked list:

linked_list.c

2

0x3B4

4

NULL0xA44

1

0xFF0 0xA44 0x333

NULL

0x666

0xFF0

3

0x333

0x3B4

ADDING UP
NUMBERS IN A
LINKED LIST
AN EXAMPLE OF
CONVERTING
SOMETHING TO A
RECURSIVE FUNCTION

Think of a function that we would write in a

normal way (iterative) that would add up all the

nodes of a linked list:

linked_list.c

SUM OF A
LINKED LIST
AN EXAMPLE OF
CONVERTING TO A
RECURSIVE FUNCTION

What if we tried to convert this function

to a recursive function (function is called

sum_list_recursive):

What is happening here?

linked_list.c

SUM OF A
LINKED LIST
FIRST CALL
RECURSIVE FUNCTION

2

0x3B4

4

NULL0xA44

0x3B4

3

0x333

What is happening here?

linked_list.c

1

0xFF0 0xA44

NULL

0x333

0x666

0xFF0

head->data

sum = 1 + sum_list_recursive(head->next)

head->next

2

0x3B4

4

NULL0xA44

0x3B4

3

0x333

SUM OF A
LINKED LIST
SECOND CALL
RECURSIVE FUNCTION

What is happening here?

linked_list.c

1

0xFF0 0xA44

NULL

0x333

0x666

0xFF0

head->data

sum = 2 + sum_list_recursive(head->next)

head->next

2

0x3B4

4

NULL0xA44

0x3B4

3

0x333

SUM OF A
LINKED LIST
THIRD CALL RECURSIVE
FUNCTION

What is happening here?

linked_list.c

1

0xFF0 0xA44

NULL

0x333

0x666

0xFF0

head->data

sum = 3 + sum_list_recursive(head->next)

head->next

2

0x3B4

4

NULL0xA44

0x3B4

3

0x333

SUM OF A
LINKED LIST
FOURTH CALL
RECURSIVE FUNCTION

What is happening here?

linked_list.c

1

0xFF0 0xA44

NULL

0x333

0x666

0xFF0

head->data

sum = 4 + sum_list_recursive(head->next)

head->next

2

0x3B4

4

NULL0xA44

0x3B4

3

0x333

SUM OF A
LINKED LIST
FIFTH CALL RECURSIVE
FUNCTION

What is happening here?

linked_list.c

1

0xFF0 0xA44

NULL

0x333

0x666

0xFF0

sum = NULL OOOPS!

2

0x3B4

4

NULL0xA44

0x3B4

3

0x333

SUM OF A
LINKED LIST
WHEN SHOULD WE
STOP?

linked_list.c

1

0xFF0 0xA44

NULL

0x333

0x666

0xFF0

When head is here

SO WHAT WILL IT
LOOK LIKE?
A SUMMARY...

sum = 1 + sum_list_recursive(head->next)

sum = 2 + sum_list_recursive(head->next)

1st call:

2nd call:

3rd call:

4th call:

5th call:

sum = 3 + sum_list_recursive(head->next)

sum = 4 + sum_list_recursive(head->next)

0

Now rebuild back up

4th call:

3rd call:

2nd call:

1st call:

sum = 4 + 0 (4)

sum = 3 + 4 (7)

sum = 2 + 7 (9)

sum = 1 + 9
sum = 10

The functions are all
kept on the stack until
the stopping case is

reached, and then the
functions starts
returning and

popping the recursive
calls off the stack

BREAK TIME (5 MINUTES)

Five silent philosophers sit at a table around a giant

plate of cake. A fork is placed between each pair of

adjacent philosophers. Each philosopher must

alternately think and eat. However, a philosopher can

only eat cake when he has both left and right forks.

Each fork can be held by only one philosopher and so

a philosopher can use the fork only if it's not being

used by another philosopher. How can we ensure that

no philosopher starves?

LET'S TRY THE
PRINT_LIST
FUNCTION
FOR FUN

LET'S TRY A FEW
SIMPLE
FUNCTIONS FOR
"FUN"
FINDING A FACTORIAL

SO WHAT WILL IT
LOOK LIKE?
A SUMMARY OF 4!...

Now rebuild back up

factorial = 24

The functions are all
kept on the stack until
the stopping case is

reached, and then the
functions starts
returning and

popping the recursive
calls off the stack

LET'S TRY A
FEW SIMPLE
FUNCTIONS
FOR "FUN"
FIBONACCI
NUMBERS

SO WHAT WILL
IT LOOK LIKE?
A SUMMARY OF
FIBONACCI (5)...

Now rebuild back up

fibonacci(5) = 5

The functions are all
kept on the stack until
the stopping case is

reached, and then the
functions starts
returning and

popping the recursive
calls off the stack

NEXT WEEK'S
REVISION LECTURE
PLEASE LET ME KNOW
WHICH TOPICS IN
PARTICULAR YOU WOULD
LIKE TO FOCUS ON IN
WEDNESDAY'S LECTURE - I
AM RUNNING A POLL!

FEEDBACK?
PLEASE LET ME KNOW ANY
FEEDBACK FROM TODAY'S
LECTURE!

www.menti.com
Code: 8220 1482

WHAT DID WE LEARN
TODAY?

RECURSION

linked_list.c (sum list and

print list)

factorial.c

fibonacci.c

ANY QUESTIONS?
DON'T FORGET YOU CAN
ALWAYS EMAIL US ON
CS1511@CSE.UNSW.EDU.AU
FOR ANY ADMIN QUESTIONS

PLEASE ASK IN THE FORUM
FOR CONTENT RELATED
QUESTIONS

