
Lecture 15

COMP1511 PROGRAMMING FUNDAMENTALS

Abstract Data Types: Stacks

Inserting into a linked list

anywhere

Searching through the linked list

for specific conditions

Deleting from a linked list

LAST WEEK...

COMP1511 Programming Fundamentals

Some more linked lists - seeing

the linked list within the linked

 list structure, and looking at

more boundary cases

Abstract Data Types: Stacks

TODAY...

COMP1511 Programming Fundamentals

https://cgi.cse.unsw.edu.au/~cs1511/21T3/live/Week09/

WHERE IS THE
CODE?
LIVE LECTURE CODE
CAN BE FOUND
HERE:

https://cgi.cse.unsw.edu.au/~cs1511/21T3/live/

LINKED LISTS
WHAT IS A LINKED
LIST WITHIN A
STRUCT?

You have seen this type of structure in your

assignment.

Usually our linked list looks like this, where the

head is the first element of the list, and the

head pointer stores the address of that first

node:

2

0x3B4

4

NULL

1

0xA44

0xFF0

0xFF0 0xA44 0x3B4

0x666

NULL

LINKED LISTS
WHAT IS A LINKED
LIST WITHIN A
STRUCT?

What happens when you now have a linked list

within a linked list?

Let's say we have a list structure that contains a

structure for numbers (which is a linked list) and

a structure for letters (which is a linked list).

For example consider:

LINKED LISTS
WHAT IS A LINKED
LIST WITHIN A
STRUCT?

Visually it looks like this:

2

0x3B4

4

NULL

1

0xA44

0xFF0

0xA44

0x3B4

NULL

letters pointer to head
0x222

0x000

numbers pointer to
head 0xFF0

0x33A

0x222

a

NULL

0x33A

NULL

b

struct list

struct letter

struct letter

struct number

struct number

struct number

LINKED LISTS
WHAT IS A LINKED
LIST WITHIN A
LINKED LIST?

Let's write some code for this list...

ABSTRACT
DATA TYPES
WHAT ARE THEY?

Abstract Data Types (ADT's) are data types

whose implementation details are hidden from

the user

 What does this mean?

A common example of an ADT is something

called a Stack - it has set ways in which it works

but it can implemented using a number of

different ways (for example, using linked lists or

using arrays)

Whoever uses our code doesn't need to see how

it was made

They only really want to know how to use it

SO WHAT IS A
STACK?
THINK DIRTY DISHES
(OR EVEN CLEAN
ONES!)

A Stack is a Last In, First Out structure (LIFO)

So you can put something on top of a stack

and you can take something off the top of the

stack, you cannot remove things from

underneath (think of your dish stack toppling

down!)

main()

THIS IS HOW OUR
MEMORY STACK
WORKS FOR
FUNCTIONS

main() main() main() main()

square() square()

change()

square()

the main() starts
running

main() calls
square() - only
square() now

accessible

square() calls
change() - only
change() now

accessible

return from
change() to

square() - only
square() now

accessible

return from
square() to

main()

WHERE IS THE
ABSTRACT PART?

item1

item2

item3

item4

item5

item6

The idea of a stack is just that - an idea!

Can you think of anywhere a Stack is applied

in our everyday interactions with computers?

A stack behaves in a certain way defined by a

set of rules

I am not given an implementation for this

stack

I can do it using arrays

I can do it using linked lists

So we could have a header file that just

defines how the stack is used, but it could be

implemented using arrays or linked lists and

we would be none the wiser - doesn't matter

as long as it follows the rules of a Stack!

SO WHAT ARE THE
RULES OF A
STACK?

item1

item2

item3

item4

item5

item6

The Stack has two special terms:

push (onto the stack, so add the element to the

top of the Stack)

pop (off the stack, take the top element off the

Stack)

Let's look at a few functions:

Create a Stack

Add to the Stack (push)

Take from the Stack (pop)

Count how many things are in the Stack

Destroy the Stack

One header file, and we will try two different

implementations:

stack.h

stack_list.c

stack_array.c

HOW WILL THE
HEADER FILE
DEFINE THINGS
FOR US?

A stack is a structure, which we will not define in

the header file, as our array and linked list files may

use slightly different definitions of the same

structure

We will then define our functions in the header file:

LET'S DO A LINKED LIST
IMPLEMENTATION FIRST
STACK: DEFINING A LINKED LIST
STACK

stack_list.c

LET'S DO A
LINKED LIST
IMPLEMENTATION
FIRST
STACK

stack_list.c

0xAAA

LET'S DO A
LINKED LIST
IMPLEMENTATION
FIRST
STACK

stack_list.c

11
NULL

0xAAA

0xC11

NULL

LET'S DO A
LINKED LIST
IMPLEMENTATION
FIRST
STACK

stack_list.c

11
NULL

12
0xC11

0xAAA

0xC11

NULL

0xDF1

LET'S DO A
LINKED LIST
IMPLEMENTATION
FIRST
STACK

stack_list.c

11
NULL

12
0xC11

0xAAA

0xC11

NULL

0xDF1

13
0xDF1

0x112

LET'S DO A
LINKED LIST
IMPLEMENTATION
FIRST
STACK

stack_list.c

11
NULL

12
0xC11

0xAAA

0xC11

NULL

0xDF1

13
0xDF1

0x112

14
0x112

0x341

LET'S DO A
LINKED LIST
IMPLEMENTATION
FIRST
STACK

stack_list.c

11
NULL

12
0xC11

0xAAA

0xC11

NULL

0xDF1

13
0xDF1

0x112

14

LET'S DO A
LINKED LIST
IMPLEMENTATION
FIRST
STACK

stack_list.c

11
NULL

12
0xC11

0xAAA

0xC11

NULL

0xDF1

13

BREAK TIME (5 MINUTES)

We’d like to find the three fastest horses from a group

of 25. We have no stopwatch and our race track has

only 5 lanes. No more than 5 horses can be raced at

once. How many races are necessary to evaluate the 3

fastest horses?

WHAT ABOUT AN
ARRAY
IMPLEMENTATION?

STACK

stack_array.c

new_stack

0 1 2 3 4 5 6 7 8 9 10 11 12

WHAT ABOUT AN
ARRAY
IMPLEMENTATION?

STACK

stack_array.c

new_stack

0 1 2 3 4 5 6 7 8 9 10 11 12

11

WHAT ABOUT AN
ARRAY
IMPLEMENTATION?

STACK

stack_array.c

new_stack

0 1 2 3 4 5 6 7 8 9 10 11 12

11 12

WHAT ABOUT AN
ARRAY
IMPLEMENTATION?

STACK

stack_array.c

new_stack

0 1 2 3 4 5 6 7 8 9 10 11 12

11 12 13

WHAT ABOUT AN
ARRAY
IMPLEMENTATION?

STACK

stack_array.c

new_stack

0 1 2 3 4 5 6 7 8 9 10 11 12

11 12 13 14

WHAT ABOUT AN
ARRAY
IMPLEMENTATION?

STACK

stack_array.c

new_stack

0 1 2 3 4 5 6 7 8 9 10 11 12

11 12 13

14

WHAT ABOUT AN
ARRAY
IMPLEMENTATION?

STACK

stack_array.c

new_stack

0 1 2 3 4 5 6 7 8 9 10 11 12

11 12

13

OTHER ABSTRACT
DATA TYPES
QUEUES

There other abstract data types,

one that works in the opposite way to a

Stack is a Queue

A queue works just like a physical queue at the

shops (or when you line up to get some great

 tickets for a music festival)

So a Queue operates on First In, First Out

principle - if you get in a queue first, you will

be served first...

To get into the queue, you enqueue, and to get

out of the queue, dequeue.

There are of course other possibilities for

abstract data types!

FEEDBACK?
PLEASE LET ME KNOW ANY
FEEDBACK FROM TODAY'S
LECTURE!

www.menti.com
Code: 6391 0195

WHAT DID WE LEARN
TODAY?

LINKED LIST:

LINKED LIST IN A

STRUCT

letter_number.c

ABSTRACT

DATA TYPES:

STACK

stack.h

stack_list.c

stack_array.c

ANY QUESTIONS?
DON'T FORGET YOU CAN
ALWAYS EMAIL US ON
CS1511@CSE.UNSW.EDU.AU
FOR ANY ADMIN QUESTIONS

PLEASE ASK IN THE FORUM
FOR CONTENT RELATED
QUESTIONS

