COMP1511 PROGRAMMING FUNDAMENTALS

Lecture 15

Abstract Data Types: Stacks

LAST WEEK...

e Inserting into a linked list
anywhere

e Searching through the linked list
for specitic conditions

e Deleting from a linked list

COMPI1511 Programming Fundamentals

COMPI1511 Programming Fundamentals

TODAY...

e Some more linked lists - seeing
the linked list within the linkea
ist structure, and looking at
more boundary cases

e Abstract Data Types: Stacks

WHERE IS THE i
CODE? Elf El
LIVE LECTURE CODE ™

CAN BE FOUND
HERE:

https://cgi.cse.unsw.edu.au/ cs1511/21T3/live /Week09/

https://cgi.cse.unsw.edu.au/~cs1511/21T3/live/

LI N KED LISTS e You have seen this type ot structure in your

assignment.
e Usually our linked list looks like this, where the

WHAT IS A LINKED nead is the first element of the list, and the
LIST WITHIN A nead pointer stores the address of that first
STRUCT? node:
OxFFO OxA44 Ox3B4
1 2
OxA44 Ox3B4
OX666

OxFFO

NULL

LINKED LISTS ° !Vhothappens when you now have a linked ist

within a linked list?

e Let's say we have a list structure that contains a
WHAT IS A LINKED structure for numbers (which is a linked list) and
LIST WITHIN A a structure for letters (which is a linked list).
STRUCT? e For example consider:

struct list {
struct number *numbers;
struct letter *letters;

}:

struct number {
int data;
struct number *next number;

| ¥

struct letter {
char letter;
struct letter *next letter

};

LINKED LISTS ° Visually it looks like this

0x000

OxFFO
WHAT IS A LINKED numbers pointer to~
head OxFFO
LIST WITHIN A |
Ox222
STRUCT? Oxhd
3 letters pointer to head
struct list { struct letter . B W22z struct number
struct number *numbers; 0x33A e | OxA44
struct letter *letters;
};
Ox33A 2
struct number { 2
int data;
struct number *next number; - Ui
i struct lette 0x3B4 yd
struct letter { NULL r// struct number
char letter; i 4
struct letter *next letter l
g NULL
NULL » NULL

struct number

LINKED LISTS

WHAT IS A LINKED
LIST WITHIN A
LINKED LIST?

struct list {
struct number *numbers;
struct letter *letters;

| F

struct number {
int data;
struct number *next number;

}i

struct letter {
char letter;
struct letter *next letter

};

e |Let's write some code for this list...

struct list *create list();

struct number *create number (int data);

int add number(struct list *list start, int data);
struct letter *create letter (char Lletter);

int add letter(struct list *list start, char letter);
volid print numbers(struct list *list start);

int main (void) {
struct list *list start = create list();

add number(list start, 1);
add number(list start, 2);
add number(list start, 3);

print numbers(list start);

)r
].

I

add letter(list start, ‘'a
add letter(list start, 'b’

print numbers(list start);

return 0;

ABSTRACT
DATA TYPES

WHAT ARE THEY?

e Abstract Data Types (ADT's) are data types

whose implementation details are hidden from
the user

o What does this mean?

e A common example of an ADT is something

called a Stack - it has set ways in which it works

but it can implemented using a number of
different ways (for example, using linked lists or
using arrays)

e Whoever uses our code doesn't need to see how
it was made

o They only really want to know how to use it

so WHAT Is A e A Stack is a Last In, First Out structure (LIFO)
STACK? e So you can put something on top of a stack
°
stack, you cannot remove things from
THINK DIRTY DISHES underneath (think of your dish stack toppling

(OR EVEN CLEAN down!) % |
ONES!) .,;. = P §

and you can take something off the top of the

int main (void) {

int number = 13;
THIS IS HOW OUR int ne_number = o;
MEMO RY STACK new number = new number + square(number);

return 0;
WORKS FOR)
FUNCTIONS int square(int number) {

int changed number = change(number);

return changed number*changed number;

int change(int number) {
return number + 1;
change())
() ()

main() main()
the main() starts main() calls square() calls return from return from
running square() - only change() - only change() to square() to
square() now change() now square() - only maing()

accessiple accessiple square() now
accessible

WHERE Is THE e The idea of a stack is just that - an idead!
ABSTRACT PART? e Can you think of anywhere a Stack is applied

in our everyday interactions with computers?

itemé e A stack behaves in a certain way detfined by a
set of rules
itemS e | am not given an implementation for this

stack
o | can do it using arrays

o | can do it using linked lists

item e So we could have a header file that just

: defines how the stack is used, but it could be

item?2 | | | |
implemented using arrays or linked lists and

we would be none the wiser - doesn't matter
as long as it follows the rules of a Stack!

so WHAT ARE TH E- Thoe S’rc::lz hOJIrS J::O sJ|roeckic1| ’rer;lnds:Jrh | .
RULESOFA push (onto the stack, so a e element to the

top of the Stack)
STACK? o pop (off the stack, take the top element off the

Stack)
itemb e Llet's look at a few functions:

o Create a Stack

itemb o Add to the Stack (push)

. o Take from the Stack (pop)

o Count how many things are in the Stack
o Destroy the Stack

e One header file, and we will try two diftferent

itemJd

item? implementations:

o stack.h
o stack list.c

o stack_array.c

HOW WILL THE ° 7 sfack s asfructure, which we will not define ir

the header tile, as our array and linked list files may

HEADER FILE use slightly ditfferent detinitions of the same
DEFINE THINGS structure

FOR US? e We will then define our functions in the header file:

//This is the header file for the Stack
//This file describes the functions that should be implemented for the stack
//Sasha Vassar Week09 Lecture 15

#define MAX 100

//This function creates the initial stack, so it will return a pointer to the
//stack 1t has created, and we input nothing into it, as we are just creating
//an empty stack

struct stack *create stack(void);

//This function pushes an item onto the stack - the function does not return
//anything, but is given the stack onto which the item is being pushed and the
//1item to be pushed

void push stack(struct stack *s, int item);

//This function pops an item off the stack - the function returns an
//int because it returns the value of the item it popped off and is given
//the stack from which they will be removing the item

int pop stack(struct stack *s);

//This function returns the size of the stack (so how many 1items are there
//1in this stack) - this means we are returned an int. And we give the
//function the stack that we want the size of.

int size stack(struct stack *s);

//This function destroys the whole stack and will free the space that
//was allocated initially - the function 1s given the stack to destroy
//and does not return anything

void destroy stack(struct stack *s);

LET'S DO A LINKED LIST
IMPLEMENTATION FIRST

STACK: DEFINING A LINKED LIST
STACK

// Define the stack structure itself, the stack structure in this case will
// have a size and a top node (which 1s the head)
struct stack {
struct node *top;
slze;
}i
// Define each element of a stack as a node
struct node {
data;
struct node *next;

¥

stack list.c

LET'S DO A e
LINKED LIST

IMPLEMENTATION

FIRST

STACK #include <stdio.h>

#include "stack.h"

int main(void) {

struct stack *new stack = create stack();

push stack
push stack
push stack
push stack

new stack, 11);
new stack, 12);
new stack, 13);
new stack, 14);

— e —

print stack(new stack);

printf("Popping the top of the stack - %d\n", pop stack(new stack));
print stack(new stack);

printf("Popping the top of the stack - %d\n", pop stack(new stack));
print stack(new stack);

return 0;

stack list.c

OXAAA

LET'S DO A
LINKED LIST
IMPLEMENTATION
FIRST

STACK #include <stdio.h>

#include "stack.h"

int main(void) {

struct stack *new stack = create stack();

push stack(new stack, 11);
push _StacK(new stack, L7,
push stack(new stack, 13);
push stack(new stack, 14);

print stack(new stack);

printf("Popping the top of the stack - %d\n", pop stack(new stack));
print stack(new stack);

printf("Popping the top of the stack - %d\n", pop stack(new stack));
print stack(new stack);

return 0O;

stack list.c NULL

LET'S DO A
LINKED LIST
IMPLEMENTATION
FIRST

STACK #include <stdio.h>
#include "stack.h"

int main(void) {

struct stack *new stack = create stack();

push stack(new stack,k 11):
push stack(new stack, 12);
push stack(new stack, 13);
push stack(new stack, 14);

print stack(new stack);

printf("Popping the top of the stack - %d\n", pop stack(new stack));
print stack(new stack);

printf("Popping the top of the stack - %d\n", pop stack(new stack));
print stack(new stack);

return 0O;

stack list.c NULL

LET'S DO A
LINKED LIST
IMPLEMENTATION
FIRST

STACK #include <stdio.h>
#include "stack.h"

int main(void) {

struct stack *new stack = create stack();

push stack(new stack, 11);
push stack(new stack, 12);
push stack(new stack, 13);
pusSh_stack(new stack, 14),

print stack(new stack);

printf("Popping the top of the stack - %d\n", pop stack(new stack));
print stack(new stack);

printf("Popping the top of the stack - %d\n", pop stack(new stack));
print stack(new stack);

return 0O;

stack list.c NULL

OxAAA

LET'S DO A
LINKED LIST
IMPLEMENTATION
FIRST

STACK R

"stack.h"

int main(void) {
struct stack *new stack = create stack();

push stack(new stack, 11);
push stack(new stack, 12);
(
(

push stack(new stack, 13):
push stack(new stack, 14);

print stack(new stack);

printf("Popping the top of the stack - %d\n", pop stack(new stack));
print stack(new stack);

printf("Popping the top of the stack - %d\n", pop stack(new stack));
print stack(new stack);

return 0;

stack list.c NULL

OxAAA

LET'S DO A
LINKED LIST
IMPLEMENTATION
FIRST

STACK #include <stdio.h>]4

#include "stack.h"

int main(void) {
struct stack *new stack = create stack();

push stack
push stack
push stack
push stack

new stack, 11);
new stack, 12);
new stack, 13);
new stack, 14);

— — — —

print stack(new stack);

printf("Popping the top of the stack - %d\n", pop stack(new stack))) ;
print stack(new stack);

printf("Popping the top of the stack - %d\n", pop stack(new stack));
print stack(new stack);

return 0;

stack list.c NULL

OxAAA

LET'S DO A
LINKED LIST
IMPLEMENTATION
FIRST

STA‘ K #include <stdio.h=>
#include "stack.h"

int main(void) {

struct stack *new stack = create stack();

new stack, 11);
new stack, 12);]3
new stack, 13);
new stack, 14);

push stack
push stack
push stack
push stack

— — — —

print stack(new stack);

printf("Popping the top of the stack - %d\n", pop stack(new stack));
print stack(new stack);

printf("Popping the top of the stack - %d\n", pop_stack(new_stack)’;
PTINC SLACK(NEW Stack),

return 0;

stack list.c NULL

BREAK TIME (5 MINUTES)

We'd like to find the three fastest horses from a group
of 25. We have no stopwatch and our race track has
only 5 lanes. No more than 5 horses can be raced at

once. How many races are necessary to evaluate the 3

fastest horses?

#include <stdio.h>
#include "stack.h"

WHAT ABOUT AN
ARRAY
IMPLEMENTATION? /@

push stack
push stack

int main(void) {

struct stack *new stack = create stack();

new stack, 11);
new stack, 12);
new stack, 13);
new stack, 14);

— S —

print stack(new stack);

printf("Popping the top of the stack - %d\n", pop stack(new stack));
print stack(new stack);

STACK printf("Popping the top of the stack - %d\n", pop stack(new stack));

print stack(new stack);

return 0;

new stack

stack_array.c

#include <stdio.h>
#include "stack.h"

int main(void) {
ARRA I struct stack *new stack = create stack();
? push stack(new stack, 11);
® pUSh_stack(new stack, [Z];

push stack(new stack, 13);
push stack(new stack, 14);

print stack(new stack);

printf("Popping the top of the stack - %d\n", pop stack(new stack));
print stack(new stack);

STACK printf("Popping the top of the stack - %d\n", pop stack(new stack));

print stack(new stack);

return 0;

new stack

stack_array.c

#include <stdio.h>
#include "stack.h"

WHAT ABOUT AN
ARRAY
IMPLEMENTATION? e

pUsiTSstack{mew stack, 157
push stack(new stack, 14);

int main(void) {

struct stack *new stack = create stack();

print stack(new stack);

printf("Popping the top of the stack - %d\n", pop stack(new stack));
print stack(new stack);

STACK printf("Popping the top of the stack - %d\n", pop stack(new stack));

print stack(new stack);

return 0;

new stack

stack_array.c

#include <stdio.h>
#include "stack.h"

int main(void) {
ARRA I struct stack *new stack = create stack();
? push stack(new stack, 11);
® push stack(new stack, 12):

push stack(new stack, 13);
push stack(new stack, 14);

print stack(new stack);

printf("Popping the top of the stack - %d\n", pop stack(new stack));
print stack(new stack);

STACK printf("Popping the top of the stack - %d\n", pop stack(new stack));

print stack(new stack);

return 0;

new stack

stack_array.c

#include <stdio.h>
#include "stack.h"

int main(void) {
ARRA I struct stack *new stack = create stack();
? push stack(new stack, 11);
® push stack(new stack, 12);

puqh_qfarkfnpw_qTark 13) -
push stack(new stack, 14);

print stack(new stack);

printf("Popping the top of the stack - %d\n", pop stack(new stack));
print stack(new stack);

STACK printf("Popping the top of the stack - %d\n", pop stack(new stack));

print stack(new stack);

return 0;

new stack

stack_array.c

#include <stdio.h>
#include "stack.h"

WHAT ABOUT AN
ARRAY
IMPLEMENTATION? @

push stack
push stack

int main(void) {

struct stack *new stack = create stack();

new stack, 11);
new stack, 12);
new stack, 13);
new stack, 14);

— S —

print stack(new stack);

-

printf("Popping the top of the stack - %d\n", pop stack(new stack)
print stack(new stack); = =

STACK printf("Popping the top of the stack - %d\n", pop stack(new stack));

print stack(new stack);

1 Zl) return 0;

new stack

stack_array.c

#include <stdio.h>
#include "stack.h"

int main(void) {
ARRA I struct stack *new stack = create stack();
? push stack
® push stack

push stack
push stack

new stack, 11);
new stack, 12);
new stack, 13);
new stack, 14);

— S —

print stack(new stack);

printf("Popping the top of the stack - %d\n", pop stack(new stack));
print stack(new stack);

STACK printf("Popping the top of the stack - %d\n", pop=stack{new=stackﬂ;

print stack(new stack);

1 E% } return 0;

new stack

stack_array.c

OTHER ABSTRACT e There other dbsfrocT dato ’rypes,.
o one that works in the opposite way to a
DATA TYPES

QUEUES

Stack is a Queue

e A queue works just like a physical queue at the
shops (or when you line up to get some great
tickets tfor a music festival)

e So a Queue operates on First In, First Out
principle - it you get in a queue first, you will
be served first...

e To get into the queue, you enqueue, and to get
out of the queue, dequeue.

e There are of course other possibilities tor
abstract data types!

FEEDBACK?

PLEASE LET ME KNOW ANY
FEEDBACK FROM TODAY'S
LECTURE!

WwWwWw.menti.com

Code: 6391 0195

WHAT DID WE LEARN
TODAY?

LINKED LIST: ABSTRACT
LINKED LIST IN A DATA TYPES:
STRUCT STACK

letter_number.c stack.h
stack _list.c
stack_array.c

ANY QUESTIONS?

DON'T FORGET YOU CAN
ALWAYS EMAIL US ON
CS1I5S1M@CSE.UNSW.EDU.AU
FOR ANY ADMIN QUESTIONS

PLEASE ASK IN THE FORUM
FOR CONTENT RELATED
QUESTIONS

