

#### **COMP1511 PROGRAMMING FUNDAMENTALS**

## Lecture 13

Linked Lists: inserting anywhere in the list, searching through a linked list for specific conditions





COMP1511 Programming Fundamentals



- Adding at the start of a linked list
- Multi-file projects • A bit more about memory Slow intro to linked lists
- - Printing out a linked list (traversing the list)

## LAST WEEK...



COMP1511 Programming Fundamentals

- Linked lists
  - Adding to a linked list at any point
- - Searching through a linked
    - list for specific conditions



## WHERE IS THE CODE?

LIVE LECTURE CODE CAN BE FOUND HERE:

https://cgi.cse.unsw.edu.au/~cs1511/21T3/live/Week08/



## **A REHASH:** LINKED LISTS **A NODE**

- the list

## a node

[contains some data and also a pointer to the next node of the same data type ]

struct node { **int** data; struct node \*next;

• Linked list is made up of many nodes • Each node has some data and a pointer to the next node, creating a linked structure that forms

#### some data of type int

pointer to the next node, which also has some data of type int and a pointer to the next node

## **A REHASH: LINKED LISTS**

#### **MANY NODES**

 We can create a linked list, by having many nodes together, with each struct node next pointer giving us the address of the node that follows it

some data of type int

A pointer to the first node pointer to the next node, which also has some data of type int and a pointer to the next node some data of type int

pointer to the next node, which also has some data of type int and a pointer to the next node



## **A REHASH: LINKED LISTS**

- 1, 2, 4



• Let's say we have a list with numbers:

• How will this look in a linked list structure?



## LINKED LISTS **FINDING WHERE TO INSERT**

- problem)
- to put a 3 between 2 and 4...

• I could have a condition that will help me find at which point to insert (specified by my

• In my list, for example, it could be that I want

• This would involve searching through the list to find 2 (or if the list is in order, it may be to find the value less than the one I am inserting and the value after to be greater than the value I am inserting and then insert by creating a new node and linking it to the right space...

## LINKED LISTS (INSERT 3)



#### LINKED LISTS (INSERT 3) 2. CREATE A NODE



**CURRENT** 

0x68A



0x3B4

| ſ             | 4      |        |
|---------------|--------|--------|
| ISERT<br>IERE | NULL - | → NULL |

# LINKED LISTS (INSERT



**CURRENT** 

0x68A

## LINKED LISTS **LET'S SEE THE CODE**

#### linked list.c

//that will keeo track of where you are struct node \*current = head; //the create node function we wrote last week struct node \*new node = create node(data, NULL); //which signals the end of the list while (current != NULL) { //Check where to insert new node->next = current->next; current->next = new node; } current = current->next; **return** head;

```
struct node *insert middle(int data, struct node *head) {
   //create a pointer and point it to the head of the list
   //create the new node that you want to insert by using
   //Start traversing through my list by checking if I am at NULL
```

```
//(this decision assumes nodes are in numerical order)
if (current->data < data && current->next->data > data) {
```

//increment to the next node - otherwise you have an infinite loop!

//return the head of the list with the new node attached in

## LINKED LISTS (INSERT 5)

#### WHAT IF WE WANT TO INSERT AT THE END OF THE LIST 1, 2, 4? **1. FIND WHERE TO INSERT: IS CURRENT LESS THAN 5 AND NEXT MORE THAN 5? WHAT IF WE ARE AT THE END?**





#### LINKED LISTS (INSERT 5) 2. CREATE A NODE



**CURRENT** 

0x68A



0x3B4

| ſ             |      |        |
|---------------|------|--------|
|               |      |        |
| ISERT<br>IERE | NULL | → NULL |

#### LINKED LISTS (INSERT 5) 3. INSERT NODE



**CURRENT** 



## LINKED LISTS **LET'S SEE THE CODE**

#### linked list.c

```
struct node *insert endnode(int data, struct node *head) {
    //create a pointer and point it to the head of the list
    //that will keeo track of where you are
    struct node *current = head;
    //create the new node that you want to insert by using
    //the create node function we wrote last week
    struct node *new node = create node(data, NULL);
    //Loop through until you get to the last node in the list
    //You want to stop at the last node and not go past it
    while (current->next != NULL) {
        current = current->next;
    //Set the new node as the last node, but pointing the current node to it
    current->next = new node;
    new node->next = NULL;
    return head;
```

#### **BREAK TIME (5 MINUTES)**





# PROBLEM TIME

Let's go back to our FIFA World Cup problem, and practice searching through the linked list for certain conditions and inserting new nodes in different places.



## **FEEDBACK?**

#### PLEASE LET ME KNOW ANY FEEDBACK FROM TODAY'S LECTURE!

## www.menti.com

Code: 7158 9760



## WHAT DID WE LEARN **TODAY?**

**LINKED LIST: SEARCHING FOR** WHERE TO **INSERT AND INSERTING** 

linked\_list.c



world\_cup\_prep.c

### ANY QUESTIONS? DON'T FORGET YOU CAN ALWAYS EMAIL US ON CS1511@CSE.UNSW.EDU.AU FOR ANY ADMIN QUESTIONS

PLEASE ASK IN THE FORUM FOR CONTENT RELATED QUESTIONS

