
Lecture 11

COMP1511 PROGRAMMING FUNDAMENTALS

Multi-File Projects

More memory and the start of something beautiful

(linked lists)

Pointers (fun?!)

A whole bunch of useful

functions with characters and

strings: getchar(), putchar(),

fgets(), etc.

Strings

Command Line Arguments

ONE WEEK
AGO...

COMP1511 Programming Fundamentals

We will ease back into it

(promise!)

Multi File Projects

A bit more about memory

Starting to think about another

data structure - linked list

TODAY...

COMP1511 Programming Fundamentals

https://cgi.cse.unsw.edu.au/~cs1511/21T3/live/Week07/

WHERE IS THE CODE?
LIVE LECTURE CODE CAN BE
FOUND HERE:

https://cgi.cse.unsw.edu.au/~cs1511/21T3/live/

QUICK REVISIT OF THE
LAST BIT OF CODE WE
WROTE IN WEEK 5
COMPARE.C

MULTI FILE
PROJECTS
WHAT ARE THEY?

Big programs are often spread out over multiple files.

There are a number of benefits to this:

Improves readability (reduces length of program)

You can separate code by subject (modularity)

Modules can be written and tested separately

So far we have already been using the multi-file

capability. Every time we #include, we are actually

borrowing code from other files

We have been only including C standard libraries

You can also #include your own! (FUN!)

This allows us to join projects together

It also allows multiple people to work together on

projects out in the real world

We will also often produce code that we can then use

again in other projects (that is all that the C standard

libraries are - functions that are useful in multiple

instances)

MULTI FILE
PROJECT INCLUDES
.H FILE AND A .C FILE

In a multi file project we might have:

(multiple) header file - this is the

.h file that you have been using

from standard libraries already

(multiple) implementation file -

this is a .c file, it implements

what is in the header file.

Each header file that you write,

will have its own implementation

file

a main.c file - this is the entry to

our program, we try and have as

little code here as possible

header
file

#include " .h"

impleme
ntation

file
.c

HEADER FILE
#INCLUDE " .H"

Typically contains:

function prototypes for the

functions that will be

implemented in the

implementation file

comments that describe how the

functions will be used

 #defines

the file basically SHOWS the

programmer all they need to

know to use the code

NO RUNNING CODE

This is like a definition file

IMPLEMENTATION
FILE
.C

This is where you implement the

functions that you have defined in

your header file

MAIN
MAIN.C

This is where you call functions from

that may exist in other modules.

AN
EXAMPLE
SOME SORT OF
MATHS MODULE

We will have three files:

header file - maths.h

implementation file -

maths.c

#include "maths.h"

main file - main.c

#include "maths.h"

COMPILING A
MULTI FILE
COMPILE ALL C FILES IN
THE PROJECT

To compile a multi file, you basically list

any .c files you have in your project (in

the case of our example, we have a

maths.c and a main.c file):

The program will always enter in

main.c, so there should only be one

main.c when compiling

BREAK TIME (5 MINUTES)
You have 8 sticks; 4 of them are of one

length and the four remaining ones are

a different length. Arrange the sticks so

that they form 3 identical squares.

QUICK REHASH
MEMORY

To compile a multi file, you basically list

any .c files you have in your project (in

the case of our example, we have a

maths.c and a main.c file):

QUICK REHASH
MEMORY {}

So far we have talked a bit about how

variables are stored in memory, and

live in their world {} in the stack

memory:

This means that if we create data

inside a function, it will die when

that function finishes running

This is memory that is allocated by

the compiler at compile time...

BUT WHAT
HAPPENS IF I
WANT TO SAVE
SOME MEMORY?
MALLOC()

We do have the wonderful opportunity to

allocate some memory by calling the

function malloc(bytes)

this function returns a pointer to the

piece of memory we created based on

the number of bytes we specified as

the input to this function

this also allows us to dynamically

create memory as we need it - neat!

This means that we are now in control

of this memory

WHAT IF I RUN
WILD AND JUST
KEEP ASKING
FOR MEMORY?
FREE()

It would be very impolite to keep requesting

memory to be made (and hog all that

memory!), without giving some back...

This piece of memory is ours to control

and it is important to remember to kill it or

you will eat up all the memory you

computer has... often called a memory

leak...

A memory leak occurs when you have

dynamically allocated memory (with

malloc()) that you do not free - as a

result, memory is lost and can never be

free causing a memory leak

You can free memory that you have

created by using the function free()

IF I RUN
MALLOC, HOW
DO I KNOW
HOW MANY
BYTES I WANT
TO HOLD?
SIZEOF()

We can use the function sizeof() to give us

the exact number of bytes we need to

malloc (memory allocate)

sizeof_eg.c

PUTTING IT ALL
TOGETHER:
MALLOC(SIZEOF())
FREE()

Using all of these together in a simple

example:

malloc_eg.c

Allocate memory as needed with

malloc() and using sizeof() to

determine bytes needed. Remember

malloc() returns a pointer to that

memory

Free the memory that you had

reserved with free(), once you are

done using it.

STRUCTS AND
POINTERS
-> VERSUS .

Remember that when we access members

of a struct we use a .

STRUCTS AND
POINTERS
-> VERSUS .

What happens if we make a pointer of type

struct? How do we access it then?

STRUCTS AND
POINTERS
-> VERSUS .

Those brackets can get quite confusing, so

there is a shorthand way to do this with an

 ->

Note that there is no need to

use *(jax_ptr) and instead can

just straight jax_ptr ->

WHY AND
WHEN
WOULD THIS
BE USEFUL?
INTRODUCING A
NEW DATA
STRUCTURE

Now that you have become comfortable with arrays,

we are going to become acquainted with another

important data structure: linked list

What is a linked list?

Like an array, it is used to store a collection of the

same data type

So what's the point?

Linked lists are dynamically sized, that means we

can grow and shrink them as needed - efficient for

memory!

Elements of a linked list (called nodes) do NOT

need to be stored contiguously in memory, like an

array.

Unlike arrays, linked lists are not random access

data structures! You can only access items

sequentially, starting from the beginning of the

list.

LET'S VISUALISE IT...
WHAT DOES A LINKED LIST
LOOK LIKE IN MEMORY?

SO WHAT DOES
THAT MEAN A
NODE IS?
A COLLECTION OF
SOME DATA AND ALSO
A POINTER TO THE
NEXT NODE

Since a node is a collection of two things:

some data and a pointer, it is a great

contender for a struct to hold this

collection:

int data - is just some information we are

going to store of type int

struct node *next - is a pointer called

next of type struct node, this basically

means that the pointer holds the address

to the next node

TOMORROW WE WILL START TO
PUT THIS INFORMATION TOGETHER
WHAT HAPPENS WHEN WE HAVE MANY NODES?
HOW DO WE GROW OUR LIST?
HOW DO WE SHRINK OUR LIST? (NEXT WEEK)

FEEDBACK?
PLEASE LET ME KNOW ANY
FEEDBACK FROM TODAY'S
LECTURE!

www.menti.com
Code: 8852 4616

WHAT DID WE LEARN
TODAY?

MULTI FILE

PROJECTS
maths.c

maths.h

main.c

STRUCTS AND

POINTERS
struct_ptr.c

MALLOC(),

SIZEOF(), FREE()
sizeof_eg.c

malloc_eg.c

FIRST GLIMPSE

AT LINKED LIST

ANY QUESTIONS?
DON'T FORGET YOU CAN
ALWAYS EMAIL US ON
CS1511@CSE.UNSW.EDU.AU
FOR ANY ADMIN QUESTIONS

PLEASE ASK IN THE FORUM
FOR CONTENT RELATED
QUESTIONS

