COMP1511 PROGRAMMING FUNDAMENTALS

Lecture 11

Multi-File Projects
More memory and the start of something beautitul

(linked lists)

ONE WEEK
AGO...

e Pointers (fun™!)

e A whole bunch of useful
@ functions with characters and
strings: getchar(), putchar(),

fgets(), etc.

e Strings
e Command Line Arguments

COMPI1511 Programming Fundamentals

TODAY...

e We will ease back into it
(promise!)

e Multi File Projects

e A bit more about memory

e Starting to think about another

data structure - linked list

COMPI1511 Programming Fundamentals

WHERE IS THE CODE?

LIVE LECTURE CODE CAN BE
FOUND HERE:

https://cgi.cse.unsw.edu.au/ csl1511/2173/live /Week07 /

https://cgi.cse.unsw.edu.au/~cs1511/21T3/live/

QUICK REVISIT OF THE
LAST BIT OF CODE WE
WROTE IN WEEK 5

COMPARE.C

2 fr d out tiple files.
MULTI FILE oo cre o mumber of benefits o this:

PROJ ECTS o Improves readability (reduces length of program)

o You can separate code by subject (modularity)

o Modules can be written and tested separately

WHAT ARE THEY?

e So far we have already been using the multi-file
capability. Every time we #include, we are actually
borrowing code from other files

o We have been only including C standard libraries
o You can also #include your own! (FUN!)
e This allows us to join projects together
o It also allows multiple people to work together on
projects out in the real world

e We will also often produce code that we can then use
again in other projects (that is all that the C standard
libraries are - functions that are usetful in multiple

instances)

e In a multi file project we might have:

MU LTI FILE o (multiple) header ftile - this is ’rhe.
PROJECT INCLUDES h file that you have been using

from standard libraries already

‘H FILE AND A .C FILE o (multiple) implementation tile -

this is a .c tile, it implements
header /\

what is in the header file.

o Each header tile that you write,

will have its own implementation

file
file impleme o a main.c file - this is the entry to
#include ' .h’ ntation our program, we try and have as

file ittle code here as possible

e Typically contains:

HEADER FILE o tunction prototypes for the

functions that will be
#INCLUDE" .H" implemented in the

implementation file

o comments that describe how the

functions will be used
o #defines

o the file basically SHOWS the
programmer all they need to
know to use the code

o> NO RUNNING CODE

o This is like a detinition file

e This is where you implement the

IMPLEME NTATION functions that you have defined in
FILE

.C

your header file

e This is where you call functions from

that may exist in other modules.

MAIN.C

*maths.h maths.c

1// This is the header file for the maths module example 1//This is the implementation file of maths.h
2//We defined two functions in the header file,

%ﬁi The header#gl}f will contain: 3//and this is where we will implement these two
- any eTlne 4 //functions

4// - function prototypes and any comments 5

5 6//Include your header file in the implementation file
b#define PI 3.14 7//by using the below syntax
7 8

8 //Function prototype for a function that calculates 9#include "maths.h"

10
9//square of a number 11int square(int number) {
10 int square(int number); 117 return number * number;

11 13}

SOME SORT OF 12 //Function prototype for a function that calculates 14
13//sum of two numbers 15int sum(int numberl, int number2) {

14int sum(int numberl, int number2): 16 return numberl + number2;

MATHS MODULE -

e We will have three files:

1//This is the main file in our program
2//This is where we drive the program from and where we

O h d _Fl _ h h 3//make calls to our modules. We need to include the

eG er | e mG-I- S. 4 //header file for each module that we want to use functions
5//from
6

O im |emen-l-q-|-ion 'File —_ 7#include <stdio.h>
P

8//Include the header file:
9#include "maths.h"

10
maths.c Hlint moin (void) |

" " 117 int number = 13;
. 13 int number2 = 10;
= #lﬂClUde |||CI'|'hS.h 14
15 printf("The square of the number %d is %d\n", number, square

. .) (number)) ;

O G I n -FI |e - G I n C 16 printf("The sum of %d and %d is %d\n", number, number2, sum
m m . (number, number2));

17 return 0;

s #include "maths.h" R

COMPILING A e To compile a multi file, you basically list
MU LTI FILE any .c files you have in your project (in

the case ot our example, we have a

maths.c and a main.c tile):

COMPILE ALL CFILES IN
THE PROJECT

:Eile Edit View Terminal Tabs Help
:~/maths module$ dcc maths.c main.c -o maths
:~/maths module$./maths

The square of the number 13 1s 169
The sum of 13 and 10 1s 23
:~/maths module$

e The program will always enter in
main.c, so there should only be one

main.c when compiling

BREAK TIME (5 MINUTES)

You have 8 sticks; 4 of them are of one
length and the four remaining ones are

a different length. Arrange the sticks so

that they form 3 identical squares.

e To compile a multi tile, you basically list

QUICK REHASH
any .c files you have in your project (in

MEMORY the case of our example, we have a

maths.c and a main.c file):

e So far we have talked a bit about how

QUICK REHASH
variables are stored in memory, and

MEMORY {} ive in their world {} in the stack

memory:
o This means that if we create data
inside a function, it will die when
that function finishes running

o This is memory that is allocated by

the compiler at compile time...

//Make an array

*create array() {

numbers[10] = {0};

//return pointer to the array

return numbers;
}
//However, when we get to closing bracket, our array 1s killed
//s0 we are returning a polnter to memory that we no longer have...

BUT WHAT e We do have the wondertul opportunity to

allocate some memory by calling the
HAPPENS IF I function malloc(bytes)
o this function returns a pointer to the
WANT To SAVE piece of memory we created based on
SOME MEMO RY? the number of bytes we specitied as
the input to this function

MALLOC() o this also allows us to dynamically

create memory as we need it - neat!

o This means that we are now in control
of this memory

WHAT IF | RUN

WILD AND JUST
KEEP ASKING
FOR MEMORY?

FREE()

* [t would be very impolite to keep requesting

memory to be

made (and hog all that

memory!), without giving some back...

o This piece

of memory is ours to control

and it is important to remember to kill it or

you will eat up all the memory you

computer has... often called a memory

leak...
o A memory
dynamical

malloc()) 1

leak occurs when you have
y allocated memory (with

nat you do not free - as a

result, memory is lost and can never be

free causing a memory leak

> You can free memory that you have

created by using the tfunction free()

e We can use the function sizeof() to give us

IF 1 RUN
MALLOC, HOW
DO | KNOW

the exact number of bytes we need to

malloc (memory allocate)

1//This program demonstrates how sizeof() function works
2//1t returns the size of a particular type
3//We use format specifier %lu because
4
BYTES | WANT =
6
7int main (void) {
‘1,} 8
I o HOLD 9 int array[10] = {0}:
® 10

11 //Example of using the sizeof() function

12 printf("The size of an int is: bytes\n", sizeof(int));

13 printf("The size of an array of ints (array[10]) 1is: bytes\n",
SIZEOF() 14 sizeof(array));

15 printf("The size of 10 ints is: bytes\n", 10 * sizeof(int));

16 printf("The size of a double 1is: bytes\n", sizeof(double));

17 printf("The size of a char 1is: bytes\n", sizeof(char));

18 printf("etc\n");

19 return 0;

20 }

sizeof_eg.c

PUTTING IT ALL U all of these together in a simple

example:

I OG E I H E R. #include <stdio.h>
~ //malloc() and free() live inside the <stdlib.h>

#include <stdlib.h>

void read array(int *numbers, int size);

MALLOC(SIZEOF())

int main (void) {

int size:
printf("How many numbers would you like to scan: ");

scanf("%d", &size);

//Allocate some memory space for my array and return a pointer
//to the first element
int *numbers = malloc(size * sizeof (int));

Allocate memory as needed with
malloc() and using sizeof() to

//Check 1if there 1s actually enough space to allocate
//memory, exit the program if there is not enough memory
//to allocate.

determine bytes needed. Remember

. if (numbers == NULL) {
mG”OC() re-l-urns a pOIn-l-er 1-0 ThCI'I' printf("Malloc failed, not enough space to allocate memory\n");
return 1;
memory }

//Perform some functions here
read array(numbers, size);
reverse array(numbers, size);

Free -|-he memOry -|-h0-|- you hCId //Free the allocated memory

//In this case, it would happen on program exit anyway
free(numbers) ;
return 0;

reserved with free(), once you are

done using it.

malloc_eg.c

e Remember that when we access members

of a struct we use a .

. #include <stdio.h>
#include <string.h>

-> VE RSUS ° i#define MAX 15

//1. Define struct
‘struct dog {

char name[MAX];
| int age;

'}

‘int main (void) {

//2. Declare struct

- struct dog jax;
//3. Initialise struct (access members with .)

| //Remember we can't just do jax.name = "Jax"

| //50 we will use the function strcpy() in <string.h> to copy the string over
strcpy(jax.name, "Jax");

| jax.age = 6;

printf (" 1s an awesome dog, who 1is years old\n", jax.name, jax.age);
return 0O;

e What happens it we make a pointer of type

STRUCTS AN D struct? How do we access it then?
POINTERS

2 #include <string.h>

3

4 #define MAX 15

5

6//1. Define struct
-> VERSUS [7 struct dog {

8 char name[MAX];

9 int age;

10 };

11

12 int main (void) {
13 //2. Declare struct

14 struct dog jax;

15

16 //Have a pointer that points to the variable jax of type struct dog
17 struct dog *jax ptr = &jax;

18

19 //3. Initialise struct (access members with .)

20 //Remember we can't just do jax.name = "Jax"

21 //50 we will use the function strcpy() in <string.h> to copy the string over
22 //strcpy(jax.name, "Jax");

23 //jax.age = b,

24

25 //How would we initialise it using the pointer?

26 //Perhaps dereference the pointer and access the member?

27 strcpy((*jax ptr).name, "Jax");
28 (*jax ptr).age = 6;

29

30 printf(" is an awesome dog, who 1s years old\n", (*jax ptr).name,
31 (*jax ptr).age);
32 return 0;

33}

24

STRUCTS AND
POINTERS

-> VERSUS . 6

29
30
31

printf ("

15

'hose brackets can get quite confusing, so

there is a shorthand way to do this with an

->

Strcpy{{*jax ptr).name, 'Jax'};
(*jax ptr).age = 6;

", (*jax ptr).name,
(*7ax ptr).age);

an awesome dog, who 1s years old

Note that there is no need to
use *(jax_ptr) and instead can

just straight jax_ptr ->

Strcpy{jax ptr->name, 'Jax”};

jax ptr-=age

printf ("

15

I"-i

", Jax ptr-=name,
jax ptr-=age);

an awesome dog, who 1s years old

WHY AN D e Now that you have become comfortable with arrays,
we are going to become acquainted with another

WH E N important data structure: linked list

e What is a linked list?

WOU LD TH Is o Like an array, it is used to store a collection of the
BE USEFUL? same data type
o Linked lists are dynamically sized, that means we

INTRODUCING A can grow and shrink them as needed - efticient for
NEW DATA memory!
STRUCTURE o Elements of a linked list (called nodes) do NOT

need to be stored contiguously in memory, like an

e So what's the point?

array.

o Unlike arrays, linked lists are not random access
data structures! You can only access items
sequentially, starting from the beginning of the
list.

LET'S VISUALISE IT...

WHAT DOES A LINKED LIST
LOOK LIKE IN MEMORY?

SO WHAT DOES
THAT MEAN A
NODE IS?

A COLLECTION OF
SOME DATA AND ALSO
A POINTER TO THE
NEXT NODE

e Since a node is a collection of two things:

some data and a pointer, it is a great

contender for a struct to hold this

collection:

struct node {
data;

struct node *next:

}

e int data - is just some information we are

going to store of type int

e struct node *next - is a pointer called

next of type struct node, t
means that the pointer ho

to the next node

nis basical

ds the add

Y
ress

TOMORROW WE WILL START TO
PUT THIS INFORMATION TOGETHER

WHAT HAPPENS WHEN WE HAVE MANY NODES?
HOW DO WE GROW OUR LIST?
HOW DO WE SHRINK OUR LIST? (NEXT WEEK)

FEEDBACK?

PLEASE LET ME KNOW ANY
FEEDBACK FROM TODAY'S
LECTURE!

www.menti.com

Code: 8852 4616

WHAT DID WE LEARN
TODAY?

MULTI FILE MALLOC(), STRUCTS AND FIRST GLIMPSE
PROJECTS SIZEOF(), FREE() POINTERS AT LINKED LIST

maths.c sizeof_eg.c struct_ptr.c
maths.h malloc_eg.c

main.c

ANY QUESTIONS?

DON'T FORGET YOU CAN
ALWAYS EMAIL US ON
CS1I5S1M@CSE.UNSW.EDU.AU
FOR ANY ADMIN QUESTIONS

PLEASE ASK IN THE FORUM
FOR CONTENT RELATED
QUESTIONS

