
Lecture 9

COMP1511 PROGRAMMING FUNDAMENTALS

A bit more about debugging your code,

Some awesome functions for characters,

And starting to look at strings

Talked a bit more about libraries

Learnt about 1D arrays

Looked at 2D arrays (which make

up a grid and allow us to do

some pretty cool stuff)

Got introduced to pointers

LAST WEEK...

COMP1511 Programming Fundamentals

Revisit pointers, by solving a

problem with pointers

Look at debugging code

including compile time errors and

run time errors

Learn two new functions

available to us: getchar() and

putchar()

TODAY...

COMP1511 Programming Fundamentals

https://cgi.cse.unsw.edu.au/~cs1511/21T3/live/Week05/

WHERE IS THE CODE?
LIVE LECTURE CODE CAN BE
FOUND HERE:

https://cgi.cse.unsw.edu.au/~cs1511/21T3/live/

PROBLEM TIME
ARRAYS AND POINTERS
AND FUNCTIONS - LET'S
BRING IT ALL TOGETHER...

Let's see a good use of pointers. Now

remember that you can only return one thing

back to main and you can't return an array*

The problem is this:

Read in an array of numbers (user will specify

how many numbers they plan to read in). Then

the first number and the last number in the

array will be swapped, and the modified array

printed out again.

*So without using pointers, can you have a

swapping function that swaps out two things? How

would you return both of those things back to the

main?
the_shuffler.c

DEBUGGING CODE
WHAT DOES IT MEAN?

Debugging - you have probably

already spent quite a bit of time

writing code, and even more time

troubleshooting what you have

written. Welcome to the world of

debugging!

Debugging is the process in which

we find bugs that cause our code

not to work as specified, and

remove those bugs

WHAT IS A BUG
CODE ERRORS ARE CALLED
BUGS

Any error that stops your code from

working as specified, is referred to

as a bug.

Bugs can occur at:

Compile time (syntax issues -

easier to fix!)

Run time (logic issues - much

harder to fix!)

COMPILE TIME
ISSUES
BUGS WE GET TOLD ABOUT
AT COMPILE TIME

Usually these types of bugs are

syntax associated

Sometimes the error message is a

consequence of the bug itself

dcc is pretty good at telling you

what has gone wrong, and what

needs changing

RUN-TIME ISSUES
LOGIC BUGS

These are harder to find, because the

program might compile successfully

but not to what we want it to!

Can happen if:

we have misunderstood the spec

Used wrong indexing, wrong

comparisons (wrong solution)

One strategy is to use:

external tracing to trace the

outputs of your program

use printf statements in random

places in your code, to see values

that your variables take

EXTERNAL
TRACING
HAND EXECUTION OF CODE

External tracing of code is

 executing a program in one’s head

or by hand.

Let's see an example of tracing:

 trace.c

EXTERNAL TRACING
WEEK04/HIGHEST_NUMBER.C

0xF220

0xF224

0xF228

0xF22C

0xF230

0xF234

0xF238

0xF23C

0xF240

0xF244

BREAK TIME (5 MINUTES)
What's the next number in the following

sequence?

 1

 11

 21

 1211

111221

312211

LET'S DO A QUICK CODE
DEMO OF IT
DEBUG! DEBUG! DEBUG!

debug.c

HELPFUL LIBRARY
FUNCTIONS FOR
CHARS
GETCHAR()

 getchar() is a function that reads a

character from input (a single

character)

Reads one byte of input

Usually returns an int (ASCII

code of that character that it

read)

Can return -1 (EOF), which is

useful for knowing when to

finish input

will not get its input until enter

is pressed at the end of the line

(it keeps filling up a buffer until

enter is pressed)

HELPFUL LIBRARY
FUNCTIONS FOR
CHARS
PUTCHAR()

 putchar() is a function that prints

out one character to standard

output

Similar to printf("%c", character);

WHY USE
GETCHAR() OVER
SCANF()

 scanf() is a formatted way of reading

input from terminal, whereas getchar()

reads a single character at a time

scanf() reads a character according

to the format specified (%d, %lf, %c),

whereas getchar() just reads a single

character at a time

scanf() takes in the format and

variable address, whereas getchar()

does not take any input.

So scanf() can do many things and is

easy to make mistakes with, if you

need one character at a time, it is

better to use getchar()

WHY USE
PUTCHAR() OVER
PRINTF()

 printf() is a formatted way of

outputting to terminal, whereas

putchar() outputs a single character at

a time

SOME OTHER
INTERESTING
CHARACTER
FUNCTIONS
<CTYPE.H> STANDARD
LIBRARY

isalpha() - will determine if the

character is a letter

isdigit() - will determine if the

character is a number

islower() - will determine if the

character is a lower case letter

isupper() - will determine if the

character is an upper case letter

tolower() - will convert the character

to a lower case letter

toupper() - will convert the character

to an upper case letter

Some other useful functions for

characters:

CHECK OUT THE REST OF THE FUNCTIONS:
HTTPS://WWW.TUTORIALSPOINT.COM/C_STANDARD_LIBRARY/

CTYPE_H.HTM

DEMO TIME
LET'S USE SOME OF OUR
HELPFUL NEW FUNCTIONS

demo_functions.c

FEEDBACK?
PLEASE LET ME KNOW ANY
FEEDBACK FROM TODAY'S
LECTURE!

www.menti.com
Code: 8444 4604

WHAT DID WE LEARN
TODAY?

POINTERS

the_shuffle.c

CHARACTER

FUNCTIONS

getchar_demo.c

DEBUGGING

debug.c

OTHER

CHARACTER

FUNCTIONS

char_functions.c

ANY QUESTIONS?
DON'T FORGET YOU CAN
ALWAYS EMAIL US ON
CS1511@CSE.UNSW.EDU.AU
FOR ANY ADMIN QUESTIONS

PLEASE ASK IN THE FORUM
FOR CONTENT RELATED
QUESTIONS

