COMP1511 PROGRAMMING FUNDAMENTALS

Lecture 9

A bit more about debugging your code,
Some awesome functions for characters,

And starting to look at strings

LAST WEEK...

e Talked a bit more about libraries

e Learnt about 1D arrays

e Looked at 2D arrays (which make
up a grid and allow us to do

some pretty cool stuff)

e Got intfroduced to pointers

COMPI1511 Programming Fundamentals

TODAY...

e Revisit pointers, by solving o
problem with pointers

e Look at debugging code
including compile time errors ana

run tfime errors

e Learn two new functions
available to us: getchar() and

putchar()

COMPI1511 Programming Fundamentals

WHERE IS THE CODE?

LIVE LECTURE CODE CAN BE
FOUND HERE:

https://cgi.cse.unsw.edu.au/ ¢cs1511/21T3/live /WeekQ05/

https://cgi.cse.unsw.edu.au/~cs1511/21T3/live/

PROBLEM TIME

ARRAYS AND POINTERS
AND FUNCTIONS - LET'S
BRING IT ALL TOGETHER...

O

the shuffler.c

Let's see a good use of poi
remember that you can on

nters. Now
y return one thing

back to main and you can't return an array®

The problem is this:

Read in an array of numbers (user will specity

now many numbers they plan to read in). Then

the first number and the last number in the

array will be swapped, and the moditied array

printed out again.

*So without using pointers, ca
swapping function that swaps

n you have o
out two things? How

would you return both of those things back to the

main?

DEBUGGING CODE - Pebugging - you have probably

already spent quite a bit of time

WHAT DOES IT MEAN? writing code, and even more time

troubleshooting what you have

written. Welcome to the world of
debugging!

e Debugging is the process in which
we find bugs that cause our code

not to work as specitfied, and

remove those bugs

e Any error that stops your code from

working as specified, is referred to

WHAT IS A BUG
as a bug.

CODE ERRORS ARE CALLED o Bugs can occur at:
BUGS o Compile time (syntax issues -

easier to fix!)

o Run time (logic issues - much

narder to tix!)

e Usually these types of bugs are

COMPILE TIME syntax associated
ISSU ES e Sometimes the error message is o

consequence of the bug itselt

BUGS WE GET TOLD ABOUT e dcc is pretty good at telling you
AT COMPILE TIME what has gone wrong, and what

needs changing

e These are harder to find, because the

RUN'TIME ISSUES program might compile successtully

but not to what we want it to!

LOGIC BUGS e Can happen if:

o we have misunderstood the spec

o Used wrong indexing, wrong
comparisons (wrong solution)
e One strategy is to use:

o external tracing to trace the

outputs of your program

o use printt statements in random
places in your code, to see values
that your variables take

e External tracing of code is

EXTE RNAL executing a program in one'’s head
TRACING or by hand.

e Let's see an example of tracing:

HAND EXECUTION OF CODE frace.c

EXTERNAL TRACING

OxF244
WEEKO4/HIGHEST_NUMBER.C OxE240

s ncae s OxED3C

14 highest| numbers[5]);

15

16 main) {

17

18 f/1. Take numbers in from the user - scanf OX |:238
19 numbers[5] = {0}; // {0,0,0,0,0,0,0,0,0,0}

20

21 i=0;

22 while (i < 5) {

23 printf("Please enter a number);

24 scanf(, &numbers[i]); OX |:234
25 i++;

26 }

27

28 //int highest number = highest(numbers);

29

30 // Find the highest number OX FZBO
31 printf({"The highest number is . highest(numbers));

32

33 return 9;

& OxF22C

36 // Function finds the highest number in an arrays
37 // Input to function: number
38 // Output to function: int

39 highest| numbers[5]) {

40

41 highest number = -1; OX FZ 2 8
42

43 i=0;

44 while (i < 5) {

45 if (numbers[i] = highest number) {

46 highest number = numbers[i]; OX FZ 24
47 }

48 i++;

49 }

50

51 return highest number; O FZ 2 O
52 } X

BREAK TIME (5 MINUTES)

What's the next number in the following

sequence?
/

1

21

1211
111221
312211

LET'S DO A QUICK CODE
DEMO OF IT -

1e1iiel B e 18111181 16 111e00a111

11181 1161 11 G101 1618ia He00a | @1
1 11111911581681010] 101861111 1 ECEEEE1 81

DEBUG! DEBUG! DEBUG! 001101616611 101616111 91010016111661 1601 100061 :
: X 0101 1] 111 B BitE11811111 1 el i11e

Bl 161 1 1eta] 8oal L 5 B e 5 e
| 11 108180 bl1oolie Bal 1601 1068 Bk
B1 EoEEne] =) | = 1608 1 1 =)
21 (= %) Bl18811418 1 161 1 1 E6EEEEE Bloa]enle 10811811
11811811 1916ea 10168 1 LIRS B | s 106011 106
B L 11 | o1l 80E0 1 1001 111116 11 A
| 1 RN 1661 Eea Bl 11 161c00s 1N eb1116
| | =2 S 2 B 18 o i) S 511851 161681566
B e 2 Bioa 111181 116 1008061810168

118

giags 1165651116616 L ' 161 16w U11108aE10 | 1

CRRE: 11611661 10660611111606016106081 1600911116661 1900000000001 00601 61
010 091661116011611161661600661611111160166106111 011110116
11600011101060000001 6016060010 816911111111611111116116161 168166081
11000116 B0611661111611660 8o 1161601 116106165616510
0116915160 0100611166161 1116606010101 016001 10 161611001
TReHE | £9116110110011611616611111111600160106816180000061 1666
debug .C 6118 016600001 161611168161 116161 61616661 1016100016 -
11160016166) 1109101616001061166601 1610111161
10 100916061 £001110061110101160110
o 1166160001160 1166110 1611116
11110111 X 11161161110106601 60001616611
16 : L ! 8o111 1000168 :

e getchar() is a function that reads o

HELPFUL LIBRARY character from input (a single
FUNCTIONS FOR choracter)
o Reads one byte of inpu
CHARS o Usually returns an int (ASCII
code of that character that it

GETCHAR() oad)

o Can return -1 (EOF), which is
usetul for knowing when to

finish input
o will not get its input until enter

is pressed at the end of the line

(it keeps tilling up a butfer until

enter is pressed)

e putchar() is a function that prints

HELPFUL LIBRARY out one character to standard
FUNCTIONS FOR output
CHARS e Similar to printf("%c", character);

1 #include <stdio
2
PUTCHAR() 3 1nt main (void) {
il
5 //Declare a varlable int called character
B int character;
7 /fUse the getchar() function to read one character at a time
8 //Remember that this function will take char when a new Line 1is entered
9 character = getchar();
10
11 //wWhen you press Ctrl+D to signal EOF (end of file) - the while loop will
12 //be exited
13 while (character '= EQF) {
14 printf("You entered the character l;
15 /fUsing the function putchar to show output one character at a time
16 putchar({character);
17 printf| };
18 //Get the next character from the buffer
19 character = getchar();
20 }
21 return 0;
22)
i i |

WHY USE
GETCHAR() OVER
SCANF()

e scant() is a formatted way of reading

input from terminal, whereas getchar()

reads a single character at a time

e scanf() reads a character according
to the tformat specitied (%d, %It, %c),

whereas get

character at

char() just reads a single

a time

e scanf() takes in the tormat and

variable address, whereas getchar()

does not take any input.

e So scanf() can do many things and is

easy to make mistakes with, it you

need one character at a time, it is

better to use getchar()

e printf() is a formatted way of

WHY USE outputting to terminal, whereas
PUTCHAR() OVER putchar() outputs a single character at

PRINTF()

Some other useful functions for

SOME OTHER
INTERESTING . . .
CHARACTER "o, /i ™
FUNCTIONS

character is a number

<CTYPE.H> STANDARD e islower() - will determine it the
LIBRARY character is a lower case letter

e isupper() - will determine if the

characters:

e isdigit() - will determine if the

character is an upper case letter
e tolower() - will convert the character

CHECK OUT THE REST OF THE FUNCTIONS:
HTTPS://WWW.TUTORIALSPOINT.COM/C_STANDARD_LIBRARY/ to a | ower case letter

CTYPE_H.HTM .
e toupper() - will convert the character

to an upper case letter

DEMO TIME

LET'S USE SOME OF OUR
HELPFUL NEW FUNCTIONS

O

demo functions.c

1 #include =<stdio

2 #1nclude =ctype

3

4 1nt main (void) {

5

6 //Declare a variable int called character

7 int character;

8

9 printf("Enter your name as an example of getchar() and press Enter) ;
16 /fUse the getchar() function to read one character at a time

11 //Remember that this function will take char when a new line 1s entered
12 character = getchar();

13

14 //When you press Ctrl+D to signal EOF (end of file) - the while loop will
15 /fbe exited

16 while (character !'= EQOF) {

17 printf{"You entered the character |

18 //Using the function putchar to show output one character at a time
19 putchar(character);
20 printf("\n");
21 //Check if the character is a lower case letter by using the function
22 f/islower() found in <=ctype.h> standard Library
23 if (islower(character))({
24 //If 1t 1s, then convert it to upper case letter by using the
25 //function toupper() found in <ctype.h> standard Library
26 character = toupper(character);
27 printf({"Your new character 1is }
28 putchar(character);
29 printf("\n");
30 }
31
32 //Get the next character from the buffer
33 character = getchar();
34 }
35 return O;
36 }

FEEDBACK?

PLEASE LET ME KNOW ANY
FEEDBACK FROM TODAY'S
LECTURE!

www.menti.com

Code: 8444 4604

WHAT DID WE LEARN
TODAY?

POINTERS DEBUGGING CHARACTER
the_shuffle.c debug.c FUNCTIONS

getchar_demo.c

OTHER
CHARACTER
FUNCTIONS

char_functions.c

ANY QUESTIONS?

DON'T FORGET YOU CAN
ALWAYS EMAIL US ON
CS15S1M@CSE.UNSW.EDU.AU
FOR ANY ADMIN QUESTIONS

PLEASE ASK IN THE FORUM
FOR CONTENT RELATED
QUESTIONS

