COMP1511 PROGRAMMING FUNDAMENTALS

Lecture 8

Continuing on the memory train to

Pointers

COMPI1511 Programming Fundamentals

YESTERDAY...

e Talked a bit more about libraries

e Went back to reinforce 1D arrays

e Looked at 2D arrays (which make

up a grid and al

some pretty coo

ow us to do

stuff)

TODAY...

e Pointers ... (they point)
o another type of variable that
holds an address ot o
variable

COMPI1511 Programming Fundamentals

WHERE IS THE CODE?

LIVE LECTURE CODE CAN BE
FOUND HERE:

https://cgi.cse.unsw.edu.au/ ¢s1511/21T3/live /Week04 /

https://cgi.cse.unsw.edu.au/~cs1511/21T3/live/

e A pointer is another variable that

LET'S WE LCOME stores a memory address of o
POINTERS INTO oo
THE MIX e [his is very powertul, as it means

you can modity things at the source

(this also has certain implications
for tunctions which we will look at
in a bit)

e To declare a pointer, you specity

what type the pointer points to with
a star:
It your pointer points to an int:

int *pointer;

THERE ARE THREE
PARTS TO A
POINTER

2. Initialise a pointer -
assign the address to the

/ variable with &
1. Declare a pointer ‘box ptr — Shox:

with a * - this is
where you will / e
specify what type the
pointer points to

tr, *box ptr)i 3. Dereference a pointer -Using a *, go
to the address that this pointer variable
IS assigned and find what is at that

LET'S SEE THIS AS
A WHOLE - WHAT
HAPPENS?

LET'S SEE IT VISUALLY

OxFFAC

OxFF48

//Declare a varliable of type int, called box.
//Assign value 6 to box OxFF44
box = 6;

OxFF40

THERE ARE THREE
PARTS TO A
POINTER

LET'S SEE IT VISUALLY

//Declare a pointer wvariable that points to an int.
/fAssign the address of box to 1t
*box ptr = &box;

OxFFAC

OxFF48

OxFF44

—~0OxFF40

THERE ARE THREE
PARTS TO A
POINTER OXFFAC

LET'S SEE IT VISUALLY

OxFF48

OXFF40

YOU CAN HAVE A //Declare a varliable of type int, called box.
JAAssign value & to box
int box = 6;
POI NTE R To //Declare a pointer variable that points to an int.
/FAssign the address of box to 1t
DIFFERENT ———
N ARIABLES //fDeclare a variable of type double, called box.
SAAssign value 3.2 to box
double box = 3.2;

WHEN YOU DECLARE A f/Declare a polnter varliable that polnts to a double.

/FAssign the address of box to 1t

POINTER, YOU WILL doumte "ot - s
SPECIFY THE TYPE THAT IT
POINTS To FOLLOWED BY * //Declare a variable of type char, called box.

JAAssign value "a' to box

char box = "a’;

//Declare a pointer variable that points to a char.
/FAssign the address of box to 1t

char *box ptr = &box

e Pointers are just another type of

INITIALISING variable, and just like our other
POINTE Rs WHEN v?:io:;e.s :lr shloulddbe initialised
YOU DON'T HAVE after it is declared.
ANYTHING To pointer, by pointing it at a variable
INITIALISE THEM -1 oo ommatecporer
WIHT YET we use: NULL

o This is a special word in a C

e Generally, we will initialise a

NULL

ibrary which is #define

o |t is basically a value of O, but

for a pointer, we use this
keyword NULL

WHAT HAPPENSIF
main | 1 q
YOU Fo RG E I I o //Declare a polnter varliable that points to an int.
f/Assign NULL to it as it is not yet pointing to anything
*box ptr = NULL;
EVE R GIVE I H Is N U L L [/Try to access the address of NULL.... CRASH
printf("The value of the variable 'box' located at address
POINTER AN ACTUAL .

return o;

(04% dcc -o polinters _intro pointers intro.c

T :~/TestCode/Week04$./ pointers intro
SOM E H I N G AN D pointers intro.c:13:16: runtime error -

dcc explanation: You are using a pointer which is NULL
A common error 1s accessing *p when p == NULL.

I H E N I R I AN D Execution stopped in main() 1in at :
//Declare a pointer variable that points to an 1int.
//Assign NULL to it as 1t is not yet pointing to anything

int *box ptr = NULL;
? //Try to access the address of NULL.... CRASH
® printf("The value of the variable 'box' located at address %p

return 0;

}

COMPILES, THEN CHAOS,
CRASH. box_ptr = NULL

1 = B ! 5 e [
1e1iiel B e 18111181 16 111e00a111

LET'S DO A QUICK CODE
DEMO OF IT

CODE, CODE, CODE! e .-1: 111:“1 :;'11 I{,—:l ::;: B16! : : rim::‘ o = ':;'"""‘I e

1 111 = ea Bicei1e11111 1 Becrli11e
Bl 161 1 1eta] 8oal L 5 B e 5 e
| 11 108180 bl1oolie Bal 1601 1068 Bk
RS EE)] (] | o 1608 1 1]
21 (= %) Bl18811418 1 161 1 1 E6EEEEE Bloa]enle 10811811
11811811 1916ea 10168 1 LIRS B | s 106011 106
B L 11 | o1l 80E0 1 1001 111116 11 A
| 1 RN 1661 Eea Bl 11 161c00s 1N eb1116
| | =2 S 2 B 18 o i) S 511851 161681566
B e 2 Bioa 111181 116 1008061810168

118

giags 1165651116616 L ' 161 16w U11108aE10 | 1

SRR 11611661 19666 800616160081 10006111 16801 1 66A0H0EG061 0668101
o100 60166111691161116166100066161111116 61111 811118116

11668011181 00006H061 601 6600010 916011111111611111116116161 1681606681

11650116 B 1661111611668 B 11618611101890185018016

0116010168 (18001116060181111660081618] 810001 10 16161 1681
: : 16060010 | 0118110116511611616611111111690616616009161 90660051 1666
POln’re rs_intro.c 0118 816506001 161611166161 116161 61610061 161 516661 6 '

— 111665 - | 1189101616081801166601 1516111161

16 ST TS - 28 £001118501110181160118
B 1106108001 168 1166118 1611116

11118111 g - 6111019666 | 56001 1

16x] i . BE111 1800108 :

BUT WHAT IS THE POINT OF © Remember a week ago when I threw
POINTERS? some easter eggs at you and told you

when we pass something to a function, it

FUNCTIONS... makes a copy of it?

e Well this is where pointers come in, it we
pas§ing a pointer toa passing a variable toa pass a pointer into a function instead, it
variable to a function function . .

| -~ B | can modity at the direct address of our
[change is made to the original [no change to original variable,
variable, as we now know its because change is to the copy] vd I’i(]ble...
address]

_ e So it you pass a normal variable to a
pass by value

function, changing that variable in the
@O function will have no effect on that

L
|
(=

J ./ variable in the main (because you are
changing a copy)
fillCup() I8 However, if you pass it a pointer, it can
make changes directly that will also
retlect back in the main function

GIF source

https://blog.penjee.com/passing-by-value-vs-by-reference-java-graphical/

1 = B ! 5 e [
1e1iiel B e 18111181 16 111e00a111

LET'S DO A QUICK CODE
DEMO OF IT

CODE, CODE, CODE! e .-1: 111:“1 :;'11 I{,—:l ::;: B16! : : rim::‘ o = ':;'"""‘I e

1 111 = ea Bicei1e11111 1 Becrli11e
Bl 161 1 1eta] 8oal L 5 B e 5 e
| 11 108180 bl1oolie Bal 1601 1068 Bk
RS EE)] (] | o 1608 1 1]
21 (= %) Bl18811418 1 161 1 1 E6EEEEE Bloa]enle 10811811
11811811 1916ea 10168 1 LIRS B | s 106011 106
B L 11 | o1l 80E0 1 1001 111116 11 A
| 1 RN 1661 Eea Bl 11 161c00s 1N eb1116
| | =2 S 2 B 18 o i) S 511851 161681566
B e 2 Bioa 111181 116 1008061810168

118

giags 1165651116616 L ' 161 16w U11108aE10 | 1

CRES i | o K 5 RIS RS - ' i1 = S | NN BoEalo]l
218 o 1113116911 o] O0e 111111cs 1111 gliligliic
116600111681 006080061 501 680001 B B160111111116111111161 18161 1668106081
11 1ee Ear] 1 G 1 1000 AR 1191668 160] B] B]
Bl1ek) el 2l Hrglalel B Gl 16 10181 1681
. . 1 g1 | () 161168a11611610611111 010010010 180600061 1608
pointers_functions.c 8110 016000001 1610111691611 1816161010001 1016160016 -
- il 110] L 118810181 5010011 Bi1E]l 1181
10 0180616001 o] 116 11giglicallia
L2 11061 6k Lk 1166116 | 12
1111111 i | 111070 e CEE |
16 = Ly ! 8o111 1000168 :

POINTERS AND ARRAYS

IS AN ARRAY A POINTER?

1|¥_. lude <<tdio.h>
2

3 1nt main (void) {

i |

5 int array[4] = {0};

b

7 // Loop through the array and print out the address of each of

8 // the elements

g int 1 = 0;

16 while (1 = 4) {

11 printf(of the array[%d] 1s , 1, &array[1]);
12 1++;

13]

14 // Now notice that the address of the array is the same as of the
15 // first element in the array. Therefore, an array name 1is a

16 // constant pointer to the array - which is why we can input a

17 // whole array into a function just by giving the array name as input
18 printf(of the array name 1s , array);

19 return 0;

20

21 }

address
address
address
address
address

stCode/WeekB4ds Sarray
array[0] 1s Ox7ffel0l864a0

arrayll] 1s Ox/TTel®lE8b4dad
arrayl[2] 1s Ox7ffel0l864a8
arrayl[3] is Ox7ffeldl864ac
array name 1s 0x7ffel0l864a0

e They are not the same

e An array is not a pointer - they are two
different things!!

e However, an array name is a constant
pointer to the array (the subtle
ditferences!)

o This means that the name of the
array always points to the first
element of the array.

o This means that we can pass an
array to a function just by giving it
the whole array name only

e For example: array_pointer.c

BREAK TIME (5 MINUTES)

Sasha thinks of a number between I and
1,000 inclusive. Your job is ask her
questions to discover what that number
is. Sasha will always be truthful, to the
best of her knowledge, but is only
allowed to reply either “Yes”, “No” or “I
don’t know.” What is the fewest number

of questions you need to ask Sasha in

order to guarantee you will discover her

number?

PROBLEM TIME

ARRAYS AND POINTERS
AND FUNCTIONS - LET'S
BRING IT ALL TOGETHER...

O

the shuffler.c

Let's see a good use of poi
remember that you can on

nters. Now
y return one thing

back to main and you can't return an array”

The problem is this:

Read in an array of numbers (user will specity

now many numbers they plan to read in). Then

the first number and the last number in the

array will be swapped, and the moditied array

printed out again.

*So without using pointers, ca
swapping function that swaps

n you have o
out two things? How

would you return both of those things back to the

main?

FEEDBACK?

PLEASE LET ME KNOW ANY
FEEDBACK FROM TODAY'S
LECTURE!

www.menti.com

Code: 88 99 69 6

WHAT DID WE LEARN
TODAY?

POINTERS

pointers_intro.c
pointers_functions.c
array_pointer.c
the shuffle.c

ANY QUESTIONS?

DON'T FORGET YOU CAN
ALWAYS EMAIL US ON
CS1I5S1M@CSE.UNSW.EDU.AU
FOR ANY ADMIN QUESTIONS

PLEASE ASK IN THE FORUM
FOR CONTENT RELATED
QUESTIONS

