
Lecture 6

COMP1511 PROGRAMMING FUNDAMENTALS

We have hit the amazing data structure

- ARRAYS !

We styled to our heart's content

Learned about Functions

YESTERDAY...

COMP1511 Programming Fundamentals

Let's return to talking about

storing things in memory as we

work

Introducing, the one, the only, the

fabulous ARRAY

TODAY...

COMP1511 Programming Fundamentals

https://cgi.cse.unsw.edu.au/~cs1511/21T3/live/Week03/

WHERE IS THE CODE?
LIVE LECTURE CODE CAN BE
FOUND HERE:

https://cgi.cse.unsw.edu.au/~cs1511/21T3/live/

LET US AGAIN
REVISIT MEMORY
A BASIC OVERVIEW

Things are a lot more complex, but

for our needs and for your

understanding, you really need a

basic knowledge of what is

happening.

MEMORY
THE WAY THINGS ARE...

Our C file is stored on the hard drive

Our Compiler compiles the code into another

file that the computer can read

When we execute code, the CPU will actually

process the instructions and perform basic

arithmetic, but the RAM will keep track of all

the data needed in those instructions and

operations, such as our variables.

Reading and writing to variables will change

the numbers in RAM

Memory is divided into the stack and the

heap

The stack is an ordered stack and the heap is

a random free for all - insert something

where you can find space for it.

heap

stack

global/static
variable

code

MEMORY
THE WAY THINGS ARE...

Stack memory is where relevant information

about your program goes:

which functions are called,

what variables you created,

Once your block of code finishes running {},

the function calls and variables will be

removed from the stack (it's alive!)

It means at compile time we can allocate

stack memory space (not at run time)

The stack is controlled by the program NOT

BY THE developer

The heap is controlled by the developer

(more on this in a few weeks) and can be

changed at run time

heap

stack

global/static
variable

code

MEMORY IS
IMPORTANT
WITHOUT MEMORY, WE
CAN'T REALLY RUN
ANYTHING

Think of your own memory and what

it allows you to do.

Computer memory is important to

consider when you are writing your

code (we don't focus on this in 1511,

but you will in later courses)

The more you waste memory, the

slower your program gets... you will

learn all about this in later

computing courses!

HOW DO WE
EFFICIENTLY
SOLVE PROBLEMS?
DIFFERENT PROBLEMS
HAVE DIFFERENT OPTIMUM
SOLUTIONS

In this course we will learn about

two pretty cool data structures:

Arrays (NOW!)

Linked Lists (after flexibility

week)

There are of course other data

structures that you will learn about

in further computing courses

Choosing the right structure to

house our data depends on what

the problem is and what you are

trying to achieve. Some structures

lend themselves better to certain

types of problems.

WHAT IS AN
ARRAY?
I BELIEVE IT IS THE SINGLE
MOST IMPORTANT DATA
STRUCTURE ...

A collection of variables all of the

same type

Think about how this is very

different to a struct

We want to be able to deal with

this collection as a whole entity,

where we can:

Access any variable in this

collection easily

Change any variable in this

collection easily

SO WHAT KINDS
OF PROBLEMS DO
ARRAYS SOLVE?
NOTICE THAT EACH OF
THESE COLLECTIONS HAS
THE SAME TYPE OF
VARIABLE I AM
RECORDING

Let's say I want to record the daily

case numbers in NSW during the

COVID-19 pandemic

What about the daily temperatures?

The amount of time daily that I

spend walking my dogs

How many deliveries I get per day

during lockdown

Can you guys think of other examples?

ARRAY VISUALLY
NOTE: ALL ELEMENTS OF
AN ARRAY MUST BE OF
THE SAME DATA TYPE
(HOMOGENOUS)

If we group our data type as a

collection, for example a collection

of integers:

We can access them as a

group(collection)

We can loop through and

access each individual element

of that collection

0 1 2 3 4 5 6

int int int int int int intthis array
holds 7
integers

You can access elements of an array by
referring to their index

LET'S TRY TO
SOLVE ONE OF
OUR PROBLEMS
NOW WITHOUT
ARRAYS AND
WITH ARRAYS
IT'S DEMO TIME...

Let's say I am tracking how many

parcels I receive each day over the

course of a given week in lockdown -

without arrays:

lockdown_parcels.c

LET'S TRY TO
SOLVE ONE OF
OUR PROBLEMS
NOW WITHOUT
ARRAYS AND
WITH ARRAYS
IT'S DEMO TIME...

What do we think? Does that look like

an efficient way to do things?

instead
of this
mess!

Declaring each day of the
week as a separate variable

WITH ARRAYS
IT'S DEMO TIME...

Similar to declaring a variable, we can

create an array because every data

type in that collection is an int, this

means we would make an array of ints

declare
an array

Declaring this as an array

1 2 3 4 5 6 7parcel_week =

this is what this array looks like if

you want to visualise it

0 1 2 3 4 5 6

int int int int int int int

DECLARING AN
ARRAY
A CLOSER LOOK

You can access any element of the array

by referencing its index

Note, that indexes start from 0

Trying to access an index that does not

exist, will result in an error

To declare an array, just like a variable:

state the type of array it will be first,

then give your array a name

square brackets that follow variable

name tell C it is an array and the

number inside the square brackets is

what says how many elements there

will be

To initialise array - curly brackets will

contain all elements separated by

commas. If you have empty {}, it means

to intialise the whole array to 0

ACCESSING,
WRITING TO AN
ARRAY
A CLOSER LOOK

You can access any element of the

array, by saying what index of the array

you want to access. For example,

 parcel_week[3] = 4

Remember that indexing starts with 0, which

is why the third index actually refers to the

fourth element...

1 2 3 4 5 6 7parcel_week =

0 1 2 3 4 5 6

int int int int int int int

parcel_week[3] = 4

HOW DO WE PLAY
WITH ARRAYS?
A CLOSER LOOK

You can't printf() a whole array, but you

can print individual elements (consider

how you could go through the array to

print out every element...)

You can't scanf() a whole array, i.e. a

line of user input test into an array, but

you can can scanf() individual elements

(think how to do every element in an

array...)

1 2 3 4 5 6 7parcel_week =

0 1 2 3 4 5 6

int int int int int int int
First entry into

while loop at i = 0,
parcel_week[0]

DEMO TIME
ARRAYS: DECLARE,
INITIALISE, SIMPLE
ACCESS

lockdown_parcel.c

BREAK TIME (5 MINUTES)
You have two light bulbs in a 100-story

building. You want to find out what floor

the bulb will break on, using the least

number of drops.

LET'S SOLVE A
PROBLEM

TRACKING SCORES1.

array_scores.c

Four players are playing a dice game.

For every round of the game, each

player rolls two dice, and the sum of

those dice is their final score for that

round. After everyone has rolled their

dice in the game, we want to be able

to find out who won that game

(highest score), and we also want to

know what the total of the scores is in

any given round.

Break down the problem into steps...

Which of those steps can we make into

functions?

FEEDBACK?
PLEASE LET ME KNOW ANY
FEEDBACK FROM TODAY'S
LECTURE!

www.menti.com
Code: 3758 2755

WHAT DID WE LEARN
TODAY?

MEMORY

LET'S START

EXPLORING

ARRAYS

lockdown_parcel.c

array_scores.c

ANY QUESTIONS?
DON'T FORGET YOU CAN
ALWAYS EMAIL US ON
CS1511@CSE.UNSW.EDU.AU
FOR ANY ADMIN QUESTIONS

PLEASE ASK IN THE FORUM
FOR CONTENT RELATED
QUESTIONS

