
Lecture 3

COMP1511 PROGRAMMING FUNDAMENTALS

Getting harder...

More complex IF statements, a closer

look at scanf(), breaking things, and

learning about STRUCTS

Started looking at C

Our first Hello! program

Compiling and running your code

printf() and scanf()

Variables (int, char, double)

Maths :)

Basic IF statements

LAST WEEK...

COMP1511 Programming Fundamentals

More complex IF statements

Logical operators

Chaining IF and ELSE

Breaking stuff

Structs

TODAY...

COMP1511 Programming Fundamentals

https://cgi.cse.unsw.edu.au/~cs1511/21T3/live/Week02/

WHERE IS THE CODE?
LIVE LECTURE CODE CAN BE
FOUND HERE:

https://cgi.cse.unsw.edu.au/~cs1511/21T3/live/

IF / ELSE IF / ELSE
LET'S LOOK AT SOME CODE
AND A DEMO

COMP1511 Programming Fundamentals

IF statements with logical

operators:

IF statements with char:

Harder IF logic and chaining if and

else together:

 if_logic.c

 upper.c

 dice_checker.c

BREAKING
THINGS

COMP1511 Programming Fundamentals

It is really good practice to think about

how it is possible to break your code?

What can go wrong?

BREAKING THINGS
IS ALWAYS FUN

Try and counter for these breaks!

Important to have good error

messages:

Tells the user exactly what has

gone wrong

How can they fix it?

What is happening!?

BREAK TIME (5 MINUTES)
Have you ever heard of the Bridges of

Konigsberg?

Below is an image of the seven bridges

and their positions (Image credit).

Is it possible to walk

around crossing

each bridge only

once?

https://simonkneebone.files.wordpress.com/2011/11/konigsberg-puzzle.jpg

HOW DOES
SCANF() REALLY
WORK?
A MAGICAL POWER...

Gives us the ability to scan stuff in from

the terminal (standard input)

We have to tell the computer what we

expect to scanf() - is it an int, a double,

or a char?

But since scanf() is a function does it

return something?

Yes, scanf() returns the number of

input values that are scanned

If there is some input failure or error

then it returns EOF (end-of-file)

This is useful to check for any errors

DID YOU NOTICE
HOW A NEW LINE
IS READ BY
SCANF()?
BECAUSE /N IS A
CHARACTER ON THE ASCII
TABLE: 10 LF (LINE FEED)

You may have noticed that scanf("%d",

&number) is able to ignore anything

other than a number when it scans in -

this is because whitespace is not a

number and the function looks for a

number

But did you notice that this is not the

case for scanf("%c, &character)? This is

because a new line (/n) is a character

on the ASCII table, which means it is still

a valid character to scan in (It is number

10 LF if you are interested!)

To fix this, we can tell scanf() to ignore

all preceeding whitespace by using a

special magic trick:

 scanf(" %c", &character)

Structures…. Or struct (as they

are known in C!)

Structs (short for structures) are

a way to create custom variables

Structs are variables that are

made up of other variables

ORGANISING
DIFFERENT
TYPES INTO
ONE RELATED
WHOLE
USER DEFINED
DATA TYPE:
STRUCT

What happens if you wanted to

group some variables together to

make a single structure?

Why do we need structures?

Helps us to organise related

but different components into

one structure

Useful in defining real life

problems

What are some examples in real

life where some things go together

to make a single component?

STRUCTURES
WHAT? WHY?
EXAMPLES?

Define the struct (outside the

main)

Declare the struct (inside your

main)

Initialise the struct

To create a struct, there are three

steps:

1.

2.

3.

HOW DO WE
CREATE A
STRUCT?

Because structures are a variable that

we have created, made up of

components that we decided belong

together, we need to define what the

struct (or structure is). To define a

struct, we define it before our main

function and use some special syntax.

1.DEFINING A
STRUCT
WHAT AM I GROUPING
TOGETHER INTO ONE
WHOLE? LET'S USE AN
EXAMPLE OF A
COORDINATE POINT

To declare a struct, inside the

main function (or wherever you

are using the structure - more

on this later)…

2.DECLARING A
STRUCT
INSIDE YOUR MAIN

We access a member by using

the dot operator .3.INITIALISE A
STRUCT
INSIDE YOUR MAIN

LET'S SEE IT ALL
TOGETHER FOR A
COORDINATE
POINT

DEFINE
DECLARE
INITIALISE

1.
2.
3.

1.define
[outside the main]

2.declare
[inside the main]

3.initialise
[inside the main]

You can see structs in action (I feel

like we are in some sort of epic film

here):

 structs_intro.c

LET'S SEE
STRUCTS IN
ACTION
CODE DEMO

WHAT DID WE LEARN
TODAY?

LOGICAL

OPERATORS

AND IF WITH

CHAR
upper.c

SAY HELLO TO

STRUCTS
structs_intro.c

CHAINING

IF/ELESE AND

ERROR

CHECKING
dice_checker

ANY QUESTIONS?
DON'T FORGET YOU CAN
ALWAYS EMAIL US ON
CS1511@CSE.UNSW.EDU.AU
FOR ANY ADMIN QUESTIONS

PLEASE ASK IN THE FORUM
FOR CONTENT RELATED
QUESTIONS

