• COMP1511 focuses on writing programs.
• Efficiency is also important. Often need to consider:
 ▶ execution time
 ▶ memory use.
• A **correct** but slow program can be useless.
• Efficiency often depends on the size of the data being processed.
• Understanding this dependency lets us predict program performance on larger data
• Informal exploration in COMP1511 - much more in COMP2521 and COMP3121
Analysis of Algorithms

How can we find out whether a program is efficient or not?

• empirical approach - run the program, several times with different input sizes and measure the time taken

• theoretical approach - try to count the number of ‘operations’ performed by the algorithm on input of size n
```cpp
int linear_search(int array[], int length, int x) {
    for (int i = 0; i < length; i = i + 1) {
        if (array[i] == x) {
            return 1;
        }
    }
    return 0;
}
```
Operations:

- start at first element
- inspect each element in turn
- stop when find X or reach end

If there are N elements to search:

- Best case check 1 element
- Worst case check N elements
- If in list on average check $N/2$ elements
- If not in list check N elements
int linear_ordered(int array[], int length, int x) {
 for (int i = 0; i < length; i = i + 1) {
 if (array[i] == x) {
 return 1;
 } else if (array[i] > x) {
 return 0;
 }
 }
 return 0;
}
Linear Search Ordered Array - Informal Analysis

Operations:

- start at first element
- inspect each element in turn
- stop when find \(X \) or find value \(\nabla X \) or reach end

If there are \(N \) elements to search:

- Best case check 1 element
- Worst case check \(N \) elements
- If in list on average check \(N/2 \) elements
- If not in list on average check \(N/2 \) elements
int binary_search(int array[], int length, int x) {
 int lower = 0;
 int upper = length - 1;
 while (lower <= upper) {
 int mid = (lower + upper) / 2;
 if (array[mid] == x) {
 return 1;
 } else if (array[mid] > x) {
 upper = mid - 1;
 } else {
 lower = mid + 1;
 }
 }
 return 0;
}
Binary Search Ordered Array - Informal Analysis

Operations:

- start with entire array
- at each step halve the range the element may be in
- stop when find X or range is empty

If there are N elements to search

- Best case check 1 element
- Worst case check $\log_2(N)+1$ elements
- If in list on average check $\log_2(N)$ elements
log₂(N) grows very slowly:

- log₂(10) = 3.3
- log₂(1000) = 10
- log₂(1000000) = 20
- log₂(1000000000) = 30
- log₂(1000000000000) = 40

Physicists estimate 10^{80} atoms in universe: $log₂(10^{80}) = 240$

Binary search all atoms in universe in < 1 microsecond
• Aim: rearrange a sequence so it is in non-decreasing order
• Advantages
 ▶ sorted sequence can be searched efficiently
 ▶ items with equal keys are located together
• The problem of sorting
 ▶ simple obvious algorithms too slow to sort large sequences
 ▶ better algorithms can sort very large sequences
• sorting extensively studied and many algorithms proposed.
• We’ll look at one slow obvious algorithm: **bubblesort**
• And at one fast algorithm: **quicksort**
• We’ll assume sorting array of ints.
• Straight-forward to extend code to handle other types of items (e.g. strings) and other data structures.
void bubblesort(int array[], int length) {
 int swapped = 1;
 while (swapped) {
 swapped = 0;
 for (int i = 1; i < length; i = i + 1) {
 if (array[i] < array[i - 1]) {
 int tmp = array[i];
 array[i] = array[i - 1];
 array[i - 1] = tmp;
 swapped = 1;
 }
 }
 }
}
void bubblesort(int array[], int length) {
 int swapped = 1;
 while (swapped) {
 swapped = 0;
 for (int i = 1; i < length; i = i + 1) {
 if (array[i] < array[i - 1]) {
 int tmp = array[i];
 array[i] = array[i - 1];
 array[i - 1] = tmp;
 swapped = 1;
 }
 }
 }
}
void quicksort(int array[], int length) {
 quicksort1(array, 0, length - 1);
}

void quicksort1(int array[], int lo, int hi) {
 if (lo >= hi) {
 return;
 }
 int p = partition(array, lo, hi);
 // sort lower part of array
 quicksort1(array, lo, p);
 // sort upper part of array
 quicksort1(array, p + 1, hi);
}
```c
int partition(int array[], int lo, int hi) {
    int i = lo, j = hi;
    int pivotValue = array[(lo + hi) / 2];
    while (1) {
        while (array[i] < pivotValue) {
            i = i + 1;
        }
        while (array[j] > pivotValue) {
            j = j - 1;
        }
        if (i >= j) {
            return j;
        }
        int temp = array[i];
        array[i] = array[j];
        array[j] = temp;
        i = i + 1;
        j = j - 1;
    }
    return j;
}
```
Quicksort and Bubblesort Compared

If we instrument quicksort and bubble sort code, we see:

<table>
<thead>
<tr>
<th>Array size (n)</th>
<th>bubblesort operations</th>
<th>quicksort operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>81</td>
<td>24</td>
</tr>
<tr>
<td>100</td>
<td>8415</td>
<td>457</td>
</tr>
<tr>
<td>1000</td>
<td>981018</td>
<td>9351</td>
</tr>
<tr>
<td>10000</td>
<td>98790120</td>
<td>102807</td>
</tr>
</tbody>
</table>

- bubblesort is proportional to n^2
- quicksort is proportional to $n \log_2(n)$
- if n is small, little difference
- if n is large, huge difference
- for large n, you need a good sorting algorithm like quicksort