—— Model solution for Tutll

—— Copyright [2000..2001] Gabriele Keller

substring:: String -> String -> Bool

substring "" str = True
substring str mn = False
substring strl str2 =
(prefix strl str2) || (substring strl (tail str2))

prefix:: String -> String -> Bool

prefix "" str = True

prefix str "" = False

prefix (sl:strl) (s2:str2)
| s1 == s2 = prefix strl str2
| otherwise = False

{7

Question 1

First, we derive the timing function for T _p (I _prefix)

If one of the input strings 1is empty, only one basic step
is necessary:

I_p (0,m) =1
T p (n,0) =1

Otherwise, depending on the result of the comparison, either
T p (n,m) =2 + T (n-1,m-1) (1)
I_p (n,m) = 2 (2)

Since we have to consider the worst case, we use (1) =>
T p (n,m) =2 * min (n,m) + 1
T s (substring)

T s (O,m) =1
T s (n,0) =1

(3 func. applications, 1 boolean operation), worst case
T s (h,m) = 4 + T_p (n,m) + IT_s (n, m —-1)
=4 + 2 * min (n,m) + 1 + T_s (n, m -1)
=5+ 2 * min (n,m) + I_s (n, m —1)
=>
To find the exact solution, we have to distinguish between two cases:

if m <= n:

T s (n,m) = sum (i=1) (m) (5 + 2 * 1)
=>

T s (n,m) = 5m + m*2 + m = m"2 + é6m +1

m > n (for m—n steps, m >= n in the rec. call)
T s (n,m) = sum(i=n+1) (m) (5 + 2 * n) + T _s(n,n)
= (5 + 2n) (m—-n) + n""2 + 6n +1

= 2mn + 5m - n*"2 + n +1

According to the observations discussed in the lecture, I _s(m,n) 1s
in the same O-class as T(m,n) = mn if m > n

Question 2

To prove that a function T is *not* in O(f), we have to show that
no constant value ¢ exists such that T is less than c¢c * f for *all*

values above a certain point.
Proof by contradiction: we assume c exlists, we show that by incrementing
the arguments sufficiently, T ’overtakes’ f again

Question 2 - 1

T s (m,n) is not in O(m), since there are no constants c¢ n0 and m0
such that

m * n < c *m for all m > mO, n > n0
(assume there were, then
m * n < c *m for all n > n0

=> n < c for all n n0, which is not
true ifor n > c)

\%

Question 2 - 2

T s (m,n) is not in O(m), since there are no constants c¢ n(0 and m0
such that

m * n < c *n *n for all m > mO, n > n0
(assume there were, then
m * n < c *n *n for all n > n0
=> m < c * n for all n > n0O, m > mO
which 1s not

true i1f we choose m big enough,
i.e, m > (n0O+1) * c

Question 3
T is in O(m*n)

-}

