
-- Tut exercises on trees

--

-- Copyright [2001..2002] Keller & Chakravarty

module TutTrees where

data Tree a = Leaf

 | Node a (Tree a) (Tree a)

 deriving (Show)

-- if we find the node and the left subtree t1 is empty,

-- we simply remove the topmost node

-- otherwise. we move the topmost node t1 up one level

-- and delete it from t1. In general, this will destroy the

-- ordering of the tree

deleteFromTree:: Ord a => a -> Tree a -> Tree a

deleteFromTree e Leaf = Leaf

deleteFromTree e (Node x t1 t2)

 | e < x = Node x (deleteFromTree e t1) t2

 | e > x = Node x t1 (deleteFromTree e t2)

 | otherwise =

 case t1 of

 Leaf -> t2

 Node y t1’ t2’ -> Node y (deleteFromTree y t1) t2

-- 2nd Exercise --

data Tree1 a = Leaf1 a

 | Node1 a (Tree1 a) (Tree1 a)

 deriving (Show)

-- Tree1 and Tree are not equivalent, as we cannot map

-- Leaf :: Tree to any value of type Tree1, i.e., Tree1

-- cannot model an emptry tree.

--

-- Tree [a] and [a]:

-- Although we can define functions from [a] -> Tree a

-- (for example, similar to insertListTree) and

-- Tree a -> [a] (e.g) flatten, operations of latter type

-- always loose information, namely the structure of the tree

-- so that different trees have to be mapped to the same list

-- so we cannot reconstruct the original tree from the list.

--

-- (the students should understand that names are not important,

-- but the number of constructors, their arity and the type of

-- their parameters)

