
-- Model solution for Lab11

--

-- Copyright [2000..2001] Gabriele Keller

module Lab11

where

foo:: [Int] -> Int

foo [] = []

foo (x:xs) = (bar xs) + (foo xs)

{- DERIVATION OF

 T_foo (n), (n: length of input list)

 T_foo (0) = 1

 T_foo (n) = T_bar (n-1) + T_foo (n-1)

 1. assume

 for T_bar (n)= 2

 T_foo (n) = 2 * n + 1

 It has linear work complexity, since the timing function is O(n).

 Proof:

 For c = 3 and all n > n0 = 2 we have

 T_foo (n) 2 * n + 1 < 3 * n, therefore T_foo is in O(n)

 1. assume

 for T_bar (n)= 3 * n + 1

 T_foo (n) = 3 * (n-1) + 1 + T_foo (n-1)

 = 3n - 2 + T_foo (n-1)

 T_foo (n) = 1 + sum (i=1)(n) (3n - 2)

 = 1 - 2n + 3 * sum(i=1)(n) n

 = 1 - 2n + 3 * (n * (n+1) / 0.5)

 = 1.5 n^2 - 0.5n + 1

 It has linear work complexity, since the timing function is O(n^2),

 According to the observations discussed in the lecture, we can

 omit all the constant factors and all components of the polynome but the

 one ith the highest exponent (2 in this case)

-}

Ord a => [a] -> [a]

bubbleSort:: Ord a => [a] -> [a]

bubbleSort xs

 | xs == xs’ = xs

 | otherwise = bubbleSort xs’

 where

 xs’ = bubble xs

 bubble (x:y: xs)

 | x < y = x : (bubble (y:xs))

 | otherwise = y : (bubble (x:xs))

 bubble xs = xs

{- DERIVATION

 First, we derive the timing function for T_bubble depending on

 the length n of the input list

 T_bubble (0) = 1

 T_bubble (1) = 1

 T_bubble (n) = 2 + T_bubble (n-1)

 => T_bubble (n) = 2 * n + 1

 T_bubblesort does not follow the same pattern as previous derivations,

 since bubbleSort is called recursively on a list of the same length.

 T_bubbleSort (n) = 1 + T_bubble (n), if xs == xs’

 1 + T_bubble (n) + T_bubblesort (n), otherwise

 However, if we look more closely at bubble we can see that

 1) bubble applied to a sorted list (and only to the sorted list) returns

 it’s input list

 2) every element in a list which is to the right (i.e., further back in

 the list) than it’s proper position (i.e., the position it will have

 in the sorted list) will be moved at least by one index to the left

 with each application of bubble

 This means that after at most n calls of bubble, bubble xs has to be

 sorted.

 Therefore, we have in the best case

 T_bubbleSort (n) = 1 + T_bubble (n) = 2 * n + 2

 in the worst case

 T_bubbleSort (n) = 1 + T_bubble (n) = 2n^2 + n + 1

 -}

