
-- Model solution for Lab05

--

-- Copyright [2000..2004] Manuel M T Chakravarty

module Lab05

where

-- Tests whether a list is a superlist of another one

--

-- Examples: [3,2,1] ‘superlist‘ [1..2] = True

-- [3,1] ‘superlist‘ [1..2] = False

-- [3,1] ‘superlist‘ [] = True

--

superlist :: Eq a => [a] -> [a] -> Bool

superlist _ [] = True

superlist ys (x:xs) = x ‘elem‘ ys && superlist ys xs

-- Split a list into two depending on whether the elements are smaller or

-- bigger than a fixed number

--

-- Examples: split 6 [5,3,6,8,9,3,2,1,4,7,8,9,7] =

-- ([5,3,6,3,2,1,4],[8,9,7,8,9,7])

-- split 9 [1..10] = ([1,2,3,4,5,6,7,8,9],[10])

--

split :: Int -> [Int] -> ([Int], [Int])

split median [] = ([], [])

split median (x:xs) | x <= median = let (ss, gs) = split median xs

 in

 (x:ss, gs)

 | otherwise = let (ss, gs) = split median xs

 in

 (ss, x:gs)

-- An alternative version

--

-- We didn’t discuss this syntax in the lecture, but a ‘where’ clause is

-- valid in all preceding alternatives that are distinguished by guards (this

-- leads to a shorter and more elegant solution to split); moreover, the

-- definition works, in fact, on all types that have an ordering (not only

-- integers)

--

split’ :: Ord a => a -> [a] -> ([a], [a])

split’ median [] = ([], [])

split’ median (x:xs) | x <= median = (x:ss, gs)

 | otherwise = (ss, x:gs)

 where

 (ss, gs) = split’ median xs

-- Quicksort

--

qsort :: Ord a => [a] -> [a]

qsort [] = []

qsort (x:xs) = qsort ss ++ [x] ++ qsort gs

 where

 (ss, gs) = split’ x xs

-- Movie database

--

type MovieList = [(String, Bool)] -- title, rented

movies = [("The Matrix" , False),

 ("Strange Days", True),

 ("Blade Runner", False)]

-- Mark a newly rented movie in the database

--

-- Examples: rent movies "Blade Runner" =

-- [("The Matrix",False),("Strange Days",True),

-- ("Blade Runner",True)]

-- rent movies "Strange Days"

-- => error message

-- rent movies "Final Fantasy"

-- => error message

--

rent :: MovieList -> String -> MovieList

rent [] movie = error "rent: unknown movie"

rent ((movie’, rented) : movies) movie

 | movie’ == movie && rented = error "rent: movie already rented"

 | movie’ == movie && not rented = (movie’, True) : movies

 | otherwise = (movie’, rented) : rent movies movie

