—-— Text-based user interface for address book application

—— Author: Gabriele Keller

module ADB_UserInterface (

Command(..),
mainDialog, —— IO Command

—— show options of main menu,

—-— read coomand from user
readSearchStr, -— IO String

—-— read search string from user
displayMatches, -— [Address] —-> IO ()

—-— display enumerated list of all

—— matches from search or delete use case
readAddressDialogue, ——- IO (Address)

—-— read address from user
changeAddressDialogue, —— :: Address —-> I0 (Address)

—-— update a given address
readChoice —-— Int -> IO Int

—-— given the no of matches, read delete

—— choice from user

) where

import AddressDB

data Command =
AddEntry |
Search |
Delete |
Change |
Quit

-— read search string from user
readSearchStr:: IO String
readSearchStr =
do
putStr "Enter search string: "
getLine

—-— read address data from user. Only minimal
—— error checking implemented so far.
readAddressDialogue:: IO (Address)
readAddressDialogue =
do

putStr "Enter first name: "

fstName <- getLine

putStr "Enter last name: "

lastName <- getLine

putStr "Enter telephone number: "

phoneNo <- readInt

return (Address fstName lastName phoneNo)

—— show all addresses of a 1list enumerated,
—-— starting with 71’
displayMatches:: [Address] -> IO ()
displayMatches adrs =

do

let adrStrs enumAddrStrings 1 adrs

let maxInd = (length adrs) -1
if adrStrs == "" then
do
putStr "no match found\n"
else
do

putStr adrStrs
where
enumAddrStrings n [] = ""



enumAddrStrings n (adr:adrs) =
(show n) ++ "\t" ++ (showAddress adr) ++ "\n" ++
(enumAddrStrings (n+l) adrs)

—-— convert an address into a string
showAddress:: Address —-> String
showAddress (Address fn 1ln no) =

fn ++ " " ++ 1n ++ "\t" ++ (show no)

—-— read an Integer value - make sure input 1s non—-empty
—-— and only contains digits
readInt:: IO Int
readInt =
do
noStr <- getLine
if (noStr == "") then
do
putStr "Please enter a number\n"
readInt

else if (and [0’ <= ¢ && "9’ >= ¢ | ¢ <= noStr]) then
return (read noStr) else
do
putStr "Please enter only digits\n"
readInt

—-— print the main dialogue
printDialog:: IO ()

printDialog =
do

let str = "Enter one of the following commands: \n" ++
"a —-- add an entry to the address book \n" ++
"s —- search the address book\n" ++
"d -- delete entry\n" ++
"¢ —-- change entry\n" ++
"qg -- quit application \n"

putStr str

—-— read Command from user. Repeat 1if illegal input
readCommand: : IO Command
readCommand =
do
str <- getLine
case str of
"a" -> return AddEntry
"s" —> return Search
"d" —> return Delete
"e" -> return Change
"g" -> return Quit
-> do putStr "Please enter a, s, or g\n"
readCommand

—-— given the max index of a list (e.g. 0 for a list
-— with 1 element, ask user to enter choice. Note
—-— that the user enumeration starts with 717
readChoice:: Int -> IO Int
readChoice maxInd =
do
putStr ("Select which address? (1 -" ++
(show (maxInd+1)) ++ ")\n")
i <- readInt
if ((0 < 1) && 1 <= (maxInd+1l)) then return (i-1)
else do
putStr "No such item (index out of range) !\n"
(readChoice maxInd)

changeAddressDialogue:: Address -> IO (Address)



changeAddressDialogue (Address fn 1ln no) =

do putStr "Change first name? (press return for no changes)\n"

putStr (fn ++ "\n")

newFn’ <- getLine

let newFn = if (newFn’ == "") then fn else newFn’
putStr "Change last name? (press return for no changes)\n"
putStr (1In ++ "\n'")

newln’ <- getLine

let newln = if (newLn’ == "") then 1ln else newLn’
putStr "Change telephone no? (enter ’'0’ no changes)\n"
putStr ((show no) ++ "\n")

newNo’ <- readInt

let newNo = if (newNo’ == 0) then no else newNo’
return (Address newFn newLn newNo)

—-— show options and read command
mainDialog:: IO Command
mainDialog =

do

printDialog
readCommand



