
Applying Inductive Logic Programming in
Reactive Environments

David Hume
Claude Sammut

School of Computer Science and Engineering
The University of New South Wales

Sydney, Australia 2052

ABSTRACT
We describe an application of inductive logic programming to the task of learning
action sequences in a simulated robot world. A learning agent observes sequences of
actions that may change the properties or relationships of objects in the world. The
observed sequence is then used to form a theory which can be generalised and tested by
imitation. That is, the learner attempts to perform its own sequence of actions. If the test
completes as expected then the generalisation is accepted. However, if it fails then a
regeneralisation occurs. That is, further generalisations are found to explain the difference
between expectation and reality.

We illustrate some of the problems that are encountered by learning systems when the
environment is complex and reactive by examining several examples.

The Problem

We are concerned with learning in a reactive environment. By this we mean that the
learning agent acquires knowledge by interacting with its environment. Thus the
learner and the world are both active. This contrasts with most common applications of
inductive learning where data are supplied to a passive program. Learning in a reactive
environment creates a number of problems that are not normally encountered in
passive learning. These problems and some suggestions about how they can be
overcome are the subjects of this paper.

It is useful to understand “active” learning because of its importance in human learning
and also because of the potential practical applications. For example, the reactive
environment could be a manufacturing plant in which an intelligent agent is required to
learn to control some part of the process. The environment could also be a space craft or

1

robot that must understand its environment in order to function correctly. Thus, if we
do not wish learning systems to continue to be disembodied entities then we must
attend to the difficulties of interacting with an external environment.

The first difficulty to be faced is that this kind of learning is often weakly directed
because no trainer is providing goals for learning. For example, young children often
play with objects left within their reach and just as often, there is no apparent purpose
to their actions. This is a form of goal-less learning where data about the world are
being collected for later use. Parents sometimes provide some direction to the learning
process by performing some simple task in view of the child and the child may then
attempt to imitate the actions. Without having a goal, it is difficult to see which objects
and actions are connected to a particular task.

The second difficulty is that a reactive environment, including our simulated one, is
never ideal. A child may observe a parent’s actions and then try to imitate them.
However, the parent has left the world in a state that differs from the initial state, thus
the child’s imitation may not succeed because the initial conditions are not correct, nor
does the child know what those conditions should be. In addition, each experiment that
the learning agent performs changes the world. If the result of the experiment is
unexpected then it may be impossible to recover. So the learning agent in a reactive
environment must be able to make do with what it finds.

The third difficulty is that hypotheses can never be proved correct. Since the intelligent
agent learns by experimentation and it can never perform an exhaustive set of
experiments, it may believe a hypothesis that is false. Apart from causing the agent to
behave incorrectly, belief in a false hypothesis will result in difficulties when trying to
repair the agent’s world model.

In this paper, we describe a program called CAP that uses a weakly directed learning
model to explore its environment. The representation language used is first order horn-
clause logic. Being a general purpose representation language, we are able to insert CAP
into a variety of different kinds of environments ranging from robot worlds to the
worlds of numbers and lists. The induction mechanism used by CAP is based on inverse
resolution (Muggleton, 1988; Muggleton and Buntine, 1988) and on an earlier program,
MARVIN (Sammut, 1981; Sammut and Banerji, 1986).

First we will give a brief overview of the CAP program and then we will illustrate the
difficulties mentioned above with examples of learning tasks for CAP.

Overview of CAP

If learning in a reactive environment were totally undirected then the intelligent agent
could perform an almost infinite variety of experiments to try to deduce the structure of

2

the world from their outcomes. This could be a little time consuming, so to provide
some constraints on exploration, learning is only initiated when another agent,
presumed to be knowledgeable, performs some sequence of actions.

One way of characterising the motivation for CAP’s learning algorithm is to think of it as
trying to produce a theory that will enable it to recognise each sequence of actions it
sees. A naive way of accomplishing this is to simply store all observed sequences.
Obviously this is wasteful of space and the likelihood of recognising a new action
sequence is low since only a sequence identical to one stored could be recognised. So
CAP tries to generalise from its observations. Thus, having created an initial theory we
proceed to test it and then generalise it.

Testing a theory is relatively straightforward. A theory contains actions and the world
states expected to be derived from those actions. Thus, if the program attempts to
perform those actions and the resulting state is not consistent with the final state
described in the theory then the theory has been disproved. When such a failure occurs,
CAP attempts to generalise the theory to account for the world as it is rather than as it
was originally expected to be. Thus, it can learn from its mistakes. We will refer to this
process as theory adjustment. Theory adjustment gives rise to unplanned generalisations,
so called because they are done in order to correct a theory that failed in an unforeseen
way. Planned generalisations occur after a theory has been tested and the experiment
concludes successfully. Although not conclusive, this encourages CAP to accept the
theory and generalise it further.

The description of one state of the world is extremely complex in anything other than a
toy example. The larger the description, the more ways there are to generalise it. A
radical generalisation would attempt to change many terms in the theory. Thus, if a
failure occurred, it would be very difficult to isolate the cause of the failure so that it
could be rectified by an adjustment to the theory. Therefore, CAP uses a very
conservative form of generalisation. The program can be said to escalate by stages or
levels to attempt progressively more complex generalisations. CAP terminates when it
can perform no generalisations on any of its theories such that the theories remain
consistent with the world.

One of CAP’s distinguishing features is that it is able develop several theories
concurrently. This is not only a good idea, it is necessary. Often, the program will be
unable to continue testing a particular theory because the world does not contain the
material required for further experimentation. So having several learning tasks running
concurrently allows the program to continue operation. Sometimes, working on another
problem will change the world in such as way as will enable experimentation to revert
to tasks that had to be stopped previously.

3

In the next two sections we will discuss two aspects of CAP in more detail: how initial
theories are constructed from observations and the global strategy for performing
generalisations.

Constructing Initial Theories from Observations

Suppose another agent in the world has constructed an arch (yet again!). CAP would try
to construct a theory that describes the preconditions and post-conditions of each action
in the construction sequence. Sequences are represented by expressions in first order
logic that indicate the states of objects in discrete time instants and the actions that
transform one state into another. We represent the sequence as follows:

S0
A0→1⎯ →⎯⎯ S1…Sn−1

An−1→n⎯ →⎯⎯ Sn

Literals in the representation language are annotated with time stamps. Thus we could
state that P is true at time t with the expression: P at t. We can also state that an action
has certain duration from a start time to a finish time: A during Start/Finish.

! Given a sequence of actions applied to states in the world, what sort of theory
can we devise? CAP behaves rather like a frog trying to catch a fly. The frog’s attention is
attracted by movement. CAP’s attention is attracted by change. Let us take arch building
as an example. During the construction process, our attention will be focussed at
different times on different objects. While constructing the columns, we will move one
block at a time onto a column. While moving one block certain actions will be
performed repeatedly. For example, to lift a block to a certain height requires us to
repeat the lifting action for several time units before changing to a lateral movement to
locate the block over the column. These changes in operation lead us to the following
heuristics:

• Divide the original sequence into sub-sequences when the objects being affected
change. For example, transfer one block to a column and then find another block.

• Divide the sub-sequences into sub-sub-sequences when actions on the same objects
change. E.g. perform a sequence of lifting actions on one block and then switch to
lateral movement of the same block.

For each sub-sub-sequence, SSSi,j, a concept Hi,j ⇐ Bi,j is created as follows:

• Hi,j = P(t1, .., tn) during TB/TE is created by inventing a unique predicate symbol,
P. The arguments t1, .., tn are all of the objects occurring in SSSi,j. TB is the earliest
time stamp appearing in the sub-sub-sequence and TE is the latest.

• The body of the clause, Bi,j is simply SSSi,j.

4

For each sub-sequence, SSi, a concept Hi ⇐ Bi is created as follows:

• The head is obtained as above except that instead of deriving the arguments and
times from primitive action predicates, we use the heads of the clauses, Hi,j
instead.

• Similarly, the body Bi is obtained from the conjunction of the literals Hi,j.

Finally, the initial theory H ⇐ B is obtained by constructing a body from the conjunction
of literals, Hi and the head is obtained before by extracting all of the objects referred to
in the body and the earliest and latest time stamps.

If the same primitive action is performed repeatedly on the same object in succession
then a recursive disjunction of clauses is created to replace the single non-recursive
clause that would have been created otherwise. The result should be more compact and
more general.

If the sequence, R consists of the states S0,..,Sn and primitive actions A0⟶1,..,An-1⟶n,
corresponding to n same actions on the same objects in succession, then the n-1 valid
concepts are:

RSA0⟶n ⇐ S0, A0⟶1, S1, ..., An-1⟶n, Sn

.....

RSAj⟶n ⇐ Sj, Aj⟶j+1, Sj+1, ..., An-1⟶n, Sn

.....

RSAn-1⟶n ⇐ Sn-1, An-1⟶n, Sn

These clauses become examples for an induction phase in which they are reduced to a
simple recursive concept. Finally, all constants are replaced by variables. Thus, a theory
consists of a hierarchy of concepts as depicted in Figure 1.

5

Description of
whole sequence

Description of actions
on same set of objects

Description of same actions
on same set of objects

Figure 1: A theory consists of a hierarchy of concepts.

Before beginning to test the new theory, CAP performs one final procedure. Because state
descriptions can become very complex it is useful to trim out irrelevant information. For
example, when moving blocks, the spatial relationship between the moved block and all
others changes but it is only the relationship to the column that is important. So we
adopt the following heuristic to remove irrelevant terms from the theory. The program
selects those predicates that have changed from one state to the next. The objects
referred to in those predicates are sorted by frequency of occurrence and only those
predicates which refer to the most frequently appearing objects are retained. The
present implementation uses only objects with the top two frequency counts but a more
general implementation will progressively loosen this condition in the search for a
theory that will consistently describe observations.

Global Learning Strategy

As we mentioned previously, CAP uses a very conservative method for generalising its
theories. Since the representation language is Horn-clause logic, we use inverse
resolution to generalise clauses. The main generalisation operators are absorption and
intra-construction with some modifications necessary for operation in the reactive
environment. Absorption generalises expressions using only background knowledge
while intra-construction is able to invent new terms in the description language, thus
expanding its ability to describe novel situations. Details of these operations are given
by Hume (1991) and the original theory behind them is described by Muggleton and
Buntine (1988). In this paper we will restrict our discussion to the global learning
strategy rather than go into details of the generalisation operators.

Each theory is assigned a generalisation level. Beginning at the lowest level, CAP
performs experiments to test the theory in its current state and then proceeds to more
and more general theories as long as they are consistent with the world. The
generalisation levels are described below.

Level 1! At this level we simply try to repeat the example sequence. In fact, this is testing
a generalisation since, when the observed sequence became the seed for the
initial theory, constants were replaced by variables, irrelevant terms were
removed and recursive expressions were introduced to replace sequences where
possible.

Level 2! Here we try to generalise the primitive action predicates (e.g. move, pickup,
etc.). There are two internal levels of generalisation. First we attempt
absorption, i.e. trying to use concept we already know about and then we try
intra-construction, i.e. inventing new concepts.

6

Level 3! At the next level we attempt to generalise sub-sub-sequences, i.e. sequences of
the same action on the same objects. Again there are two internal levels of
generalisation: absorption and intra-construction.

Level 4! At the highest level we attempt to generalise sub-sequences, i.e. sequences of
different action on the same objects. The same two internal levels of
generalisation exists here.

Unplanned generalisations also go through a number of levels similar to those
described above.

The learning strategy is best understood by looking at an example from Hume (1991).
He gives the complete program traces for the example, here we only provide enough
detail to illustrate the main features of CAP.

The world contains a tap from which water may be obtained and a collection of cups
and bowls which can contain water and cylinders which cannot (see Figure 2). Two
types of actions are possible: pouring water from the tap into any of the objects and
pouring from one object into another.

Let us assume that two sequences are observed by CAP, namely, water is poured from
cup A into cup B and cup A is filled from the tap. The description of pouring from A
into B is:

cup(a) at 0
cup(b) at 0
contains_liquid(a) at 0
~contains_liquid(b) at 0

pour(a, b) during 0/1

cup(a) at 1
cup(b) at 1
~contains_liquid(a) at 1
contains_liquid(b) at 1

7
Notice that for simplicity we have omitted descriptions of objects C, D and E,
but they too are part of the complete sequence description.

Given a sequence of actions applied to states in the world, what sort of the-
ory can we devise? CAP behaves rather like a frog trying to catch a fly. The
frog’s attention is attracted by movement. CAP’s attention is attracted by
change. Let us take arch building as an example. During the construction proc-
ess, our attention will be focussed at different times on different objects. While
constructing the columns, we will move one block at a time onto a column.
While moving one block certain actions will be performed repeatedly. For ex-
ample, to lift a block to a certain height requires us to repeat the lifting action
for several time units before changing to a lateral movement to locate the
block over the column. These changes in operation lead us to the following
heuristics:

• Divide the original sequence into sub-sequences when the objects being af-
fected change. E.g. transfer one block to a column and then find another
block.

• Divide the sub-sequences into sub-sub-sequences when actions on the
same objects change. E.g. perform a sequence of lifting actions on one
block and then switch to lateral movement of the same block.

In our water world example, CAP transforms the observation into the follow-
ing initial theory:

- 4 -

A B C

cup(A)
cup(B)

cylinder(C)
cylinder(D)

bowl(E)

D E

contains-liquid(A)
~contains-liquid(B)
~contains-liquid(C)
~contains-liquid(D)
~contains-liquid(E)

Figure 1: Water worldFigure 2: Water world

Notice that for simplicity we have omitted descriptions of objects C, D and E, but they
too are part of the complete sequence description. Next, we transform the observation
into the initial theory:

transfer(Source, Destination) during Initial/Final :-
! cup(Source) at Initial,
! cup(Destination) at Initial,
! contains_liquid(Source) at Initial,
! ~contains_liquid(Destination) at Initial,
! pour(Source, Destination) during Initial/Final,
! cup(Source) at Final,
! cup(Destination) at Final,
! ~contains_liquid(Source) at Final,
! contains_liquid(Destination) at Final.

where “transfer” would actually be an arbitrary symbol invented by the program to
uniquely identify this concept and all of the object names have been turned into
variables. As we noted earlier, there are other objects in the world that are not relevant
to this example but which are still present. Predicates involving the irrelevant objects
are trimmed out.

Let us know summarise the sequence of steps followed by CAP:

1. The two sequences of actions observed so far have been pouring water from cup A
to cup B and filling cup A from the tap.

2. Performing a repeat test, CAP attempts to pour from cup A to cup B. However, there
is a problem, at this stage, both cups are full and the theory expects the destination
to be empty before starting. In order to force the test to go ahead, CAP performs an
unplanned generalisation in which it invents the concept “may contain liquid”. This
is an intra-construction which allows CAP to match the world as it is to the world as it
would like it to be in its theory.

3. Testing resumes and completes successfully since the destination contains water at
the end. As far as the program is concerned, it does not matter that it already had
water and that an overflow occurred. Since the program has learned something at
this level, it remains at Level 1.

4. There is another theory awaiting inspection, i.e. filling from the tap. Since cup A is
empty, this test is repeated and nothing new is learned, so the generalisation level of
this theory will be raised.

5. “Transfer” is still a a lower level of generalisation so we return to it. It now tries to
pour water from B to A. This succeeds with nothing new learned so the
generalisation level of “transfer” increases.

6. “Transfer” and “fill from tap” are both at the same level of generalisation so either
one can be chosen for the next step. We continue with “transfer”. The program tests

8

to see if the source “may contain liquid” by pouring from cup B to cup A again. B is
empty but the test apparently succeeds because at the end of the test, A still contains
water. This results in an incorrect generalisation being accepted which will have to
be corrected later. Since something was learned (although incorrectly) the
generalisation level remains unchanged.

7. We now alternate between theories at the same level and revert to “fill from tap”.
We can again try generalising using “may contain liquid” and so we try filling A
and this succeeds. Again because something was learned, the generalisation level
remains unchanged.

8. Although the levels of each theory have remained unchanged, there are no more
absorption generalisations possible for either of them so we move on to intra-
construction. Staying with “fill from tap” we invent a new concept “cup or
cylinder”. So far all experiments have filled cups, now we trying filling a cylinder.
Of course this fails and the generalisation is recorded as being no good.

9. Another concept that is invented by intra-construction is “cup or bowl”. When this
is tried with either “fill from tap” or “transfer”, it is found to work.

10. As experimentation proceeds we end up having both cups empty. CAP is suspicious
by nature and frequently repeats experiments when the state of the world gives it an
opportunity to do so. According to its current theory, it should be able to pour from
B in to A because an earlier experiment had supported the premise that the source
cup “may contain liquid”. After performing the experiment, it finds that the
destination does not contain water as was expected. This causes the generalisations
on theory to be marked as no good and they are undone.

11. CAP tries to repair the theory by searching for other generalisations. As a result,
“contains_liquid(Source)” will be confirmed as necessary.

CAP will continue to look for new generalisations as long as they are consistent with the
world. When all possibilities have been exhausted, the program rests until new activity
from other agents in the world cause it to begin anew.

Conclusion

Given only a few examples and no background knowledge or domain theory, it is
possible to effectively learn concept in a wide range of reactive environments. A
representation and learning mechanism using horn-clause logic is largely responsible
for this but at a cost of controlling unconstrained behaviour. In most systems with the
breadth of application, the solution to this problem results either in a large amount of

9

domain knowledge being necessary (e.g. EBL) or a large amount of intervention from
an oracle.

Without domain knowledge or oracle intervention, effective learning has been
demonstrated using one control heuristic, i.e. “imitate activity that you see in the
environment”. The categorisation of positive and negative examples of concepts is done
by the environment when an experiment succeeds or fails. The “drive” to learn comes
from a continual search to try to match concepts with patterns in the world where the
matching is done by trying to “execute” the concepts as sequences of actions that affect
the world. When concepts only partially match the world they are generalised in an
attempt to complete the match and learning occurs as a result.

References

Hume, D. (1991). Induction of Procedures in Simulated Worlds. Ph.D. Thesis,
University of New South Wales.

Muggleton, S. (1988). “A Strategy for Constructing New Predicates in First
Order Logic” in Proceedings of the Third European Working Session on
Learning, D. Sleeman (ed). Glasgow: Pitman.

Muggleton, S. and Buntine, W. (1988). “Machine Invention of First-order
Predicates by Inverting Resolution” in Proceedings of the Fifth International
Machine Learning Workshop, R.S. Michalski, J.G. Carbonell, T.M. Mitchell
(eds). Ann Arbor: Morgan-Kaufmann.

Sammut, C. (1981). Learning Concepts by Performing Experiments, Ph.D. Thesis,
University of New South Wales.

Sammut, C. and Banerji, R.B. (1986). “Learning Concepts by Asking
Questions” in Machine Learning: An Artificial Intelligence Approach (Vol. 2),
R.S. Michalski, J.G. Carbonell, T.M. Mitchell (eds). Morgan-Kaufmann.

10

