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Abstract

This paper describes recent experiments in automatically construct-
ing reactive agents. The method used is behavioural cloning, where the
logged data from skilled, human operators are input to an induction
program which outputs a control strategy for a complex control task.
Initial studies were able to successfully construct such behavioural
clones, but suffered from several drawbacks, namely, that the clones
were brittle and difficult to understand. Current research is aimed at
solving these problems by learning in a framework where there is a sep-
aration between an agent’s goals and its knowledge of how to achieve
them.

1 Introduction

Behavioural cloning has been successfully used to construct control systems
in a number of domains (Michie et al, 1990; Sammut et al, 1992; Urbancic
& Bratko, 1994). Clones are built by recording the performance of a skilled
human operator and then running an induction algorithm over the traces
of the behaviour. The most basic form of behavioural cloning results in a
set of situation-action rules that map the current state of the process being
controlled to a set of actions that achieve some desired goal.

This formulation of the problem has several weaknesses.

e The rule sets generated are very often large and difficult to understand.



e The controllers may not be robust with respect to changes in initial
conditions and disturbances in the environment.

In this paper, we describe some attempts to solve these problems. The
main theme running through the work described here is that greater struc-
ture is added to the problem as compared with the original formulation. In
particular, we examine the following techniques:

e decomposing learning into two tasks: learning goals and learning the
actions that achieve those goals;

e constructing high-level features;

e providing a mixed-mode of automated learning and interactive knowl-
edge acquisition.

These techniques are illustrated using the domain of learning to fly an
aircraft in a flight simulator. The following section describes the original
“learning to fly” task and subsequent sections introduce each of the above
techniques for structuring the problem.

2 Learning to Fly

Sammut, Hurst, Kedzier and Michie (1992) modified a flight simulation
program to log the actions taken by a human subject as he or she flies an
aircraft. The log file is used to create the input to an induction program.
The quality of the output from the induction program is tested by running
the simulator in autopilot mode where the autopilot code is derived from
the decision tree formed by induction.

The central control mechanism of the simulator is a loop that interrogates
the aircraft controls and updates the state of the simulation according to a
set of equations of motion. Before repeating the loop, the instruments in
the display are updated.

2.1 Logging Flight Information

The display update was modified so that when the pilot performs a control
action by moving the control stick or changing the thrust or flaps settings,
the state of the simulation is written to a log file. Three subjects each ‘flew’
30 times.



At the start of a flight, the aircraft points North, down the runway.
The subject is required to fly a well-defined flight plan that consists of the
following manoeuvres:

1. Take off and fly to an altitude of 2,000 feet.
2. Level out and fly to a distance of 32,000 feet from the starting point.

3. Turn right to a compass heading of approximately 330°. The subjects
were actually told to head toward a particular point in the scenery
that corresponds to that heading.

4. At a North/South distance of 42,000 feet, turn left to head back towards
the runway. The scenery contains grid marks on the ground. The
starting point for the turn is when the last grid line was reached. This
corresponds to about 42,000 feet. The turn is considered complete
when the azimuth is between 140° and 180°.

5. Line up on the runway. The aircraft was considered to be lined up when
the aircraft’s azimuth is less than 5° off the heading of the runway and
the twist is less that £10° from horizontal.

6. Descend to the runway, keeping in line. The subjects were given the
hint that they should have an ‘aiming point’ near the beginning of the
runway.

7. Land on the runway.
During a flight, up to 1,000 control actions can be recorded. With three

pilots and 30 flights each, the complete data set consists of about 90,000
events. The data recorded in each event are:

on_ground boolean: is the plane on the ground?

g_limit boolean: have we exceeded the plane’s g limit
wing_stall boolean: has the plane stalled?

twist integer: 0 to 360° (in tenths of a degree, see below)
elevation integer: 0 to 360° (in tenths of a degree, see below)
azimuth integer: 0 to 360° (in tenths of a degree, see below)
roll_speed integer: 0 to 360° (in tenths of a degree per second)
elevation_speed integer: 0 to 360° (in tenths of a degree per second)
azimuth_speed  integer: 0 to 360° (in tenths of a degree per second)



airspeed integer: (in knots)

climbspeed integer: (feet per second)

E/W distance real: E/W distance from centre of runway (in feet)
altitude real: (in feet)

N/S distance  real: N/S distance from northern end of runway (in feet)

fuel integer: (in pounds)
rollers real: +4.3

elevator real: £3.0

rudder real: not used

thrust integer: 0 to 100%
flaps integer: 0°, 10° or 20°

The elevation of the aircraft is the angle of the nose relative to the
horizon. The azimuth is the aircraft’s compass heading and the twist is the
angle of the wings relative to the horizon. The elevator angle is changed
by pushing the mouse forward (positive) or back (negative). The rollers are
changed by pushing the mouse left (positive) or right (negative). Thrust
and flaps are incremented and decremented in fixed steps by keystrokes.
The angular effects of the elevator and rollers are cumulative. For example,
in straight and level flight, if the stick is pushed left, the aircraft will roll
anti-clockwise. The aircraft will continue rolling until the stick is centred.
The thrust and flaps settings are absolute.

When an event is recorded, the state of the simulation at the instant
that an action is performed could be output. However, there is always a
delay in response to a stimulus, so ideally we should output the state of
the simulation when the stimulus occurred along with the action that was
performed some time later in response to the stimulus. But how do we know
what the stimulus was? Unfortunately there is no way of knowing. Human
responses to sudden piloting stimuli can vary considerably but they take
at least one second. For example, while flying, the pilot usually anticipates
where the aircraft will be in the near future and prepares the response before
the stimulus occurs.

Each time the simulator passes through its main control loop, the current
state of the simulation is stored in a circular buffer. An estimate is made
of how many loops are executed each second. When a control action is
performed, the action is output, along with the state of the simulation as it
was some time before. How much earlier is determined by the size of the
buffer.



2.2 Data Analysis

Quinlan’s C4.5 (Quinlan, 1993) program was used to generate flight rules
from the data. Even though induction programs can save an enormous
amount of human effort in analysing data, in real applications it is usually
necessary for the user to spend some time preparing the data.

The learning task was simplified by restricting induction to one set of
pilot data at a time. Thus, an autopilot has been constructed for each of
the three subjects who generated training data. The reason for separating
pilot data is that each pilot can fly the same flight plan in different ways.
For example, straight and level flight can be maintained by adjusting the
throttle. When an airplane’s elevation is zero, it can still climb since higher
speeds increase lift. Adjusting the throttle to maintain a steady altitude is
the preferred way of achieving straight and level flight. However, another
way of maintaining constant altitude is to make regular adjustments to the
elevators causing the airplane to pitch up or down.

The data from each flight were segmented into the seven stages described
previously. In the flight plan described, the pilot must achieve several, suc-
cessive goals, corresponding to the end of each stage. Each stage requires
a different manoeuvre. Having already defined the sub-tasks and told the
human subjects what they are, the learning program was given the same
advantage.

In each stage four separate decision trees are constructed, one for each
of the elevator, rollers, thrust and flaps. A program filters the flight logs
generating four input files for the induction program. The attributes of a
training example are the flight parameters described earlier. The dependent
variable or class value is the attribute describing a control action. Thus,
when generating a decision tree for flaps, the flaps column is treated as the
class value and the other columns in the data file, including the settings
of the elevator, rollers and thrust, are treated as ordinary attributes. At-
tributes that are not control variables are subject to a delay, as described in
the previous section.

C4.5 expects class values to be discrete but the values for elevator, rollers,
thrust and flaps are numeric. A preprocessor breaks up the action settings
into sub-ranges that can be given discrete labels. Sub-ranges are chosen by
analysing the frequency of occurrence of action values. This analysis must
be done for each pilot to correctly reflect differing flying styles. There are
two disadvantages to this method. One is that if the sub-ranges are poorly



chosen, the rules generated will use controls that are too fine or too coarse.
Secondly, C4.5 has no concept of ordered class values, so classes cannot be
combined during the construction of the decision tree.

An event is recorded when there is a change in one of the control settings.
A change is determined by keeping the previous state of the simulation in
a buffer. If any of the control settings are different in the current state, a
change is recognised. This mechanism has the unwanted side-effect of record-
ing all the intermediate values when a control setting is changed through
a wide range of values. For example, the effects of the elevator and rollers
are cumulative. If we want to bank the aircraft to the left, the stick will be
pushed left for a short time and then centred, since keeping it left will cause
the airplane to roll. Thus, the stick will be centred after most elevator or
roller actions. This means that many low elevator and roller values will be
recorded as the stick is pushed out and returned to the centre position.

To ensure that records of low elevator and roller values do not swamp
the other data, another filter program removes all but the steady points
and extreme points in stick movement. Control engineers are familiar with
this kind of filtering. In their terms, the graph of a control’s values is
differentiated and only the values at the zero crossings of the derivative are
kept.

2.3 Generating the Autopilot

After processing the data as described above, they can be submitted to C4.5
to be summarised as rules that can be executed in a controller.

Decision tree algorithms are made noise tolerant by introducing pruning.
If the data contain noise, then many of the branches in a decision tree will be
created to classify bad data. The effects of noise can be reduced by removing
branches near the leaves of the tree. This can either be done by not growing
those branches when there are insufficient data or by cutting back branches
when their removal does not decrease classification accuracy.

The flight data are very noisy, so decision trees are generated using
conservative setting for pruning and then tested in the simulator. Pruning
levels are gradually increased until the rule ‘breaks’, ie. it is no longer able
to control the plane correctly. This procedure results in the smallest, and
thus most readable, rule the succeeds in accomplishing the flight goal.



2.4 Linking the Autopilot with the Simulator

To test the induced rules, they are used as the code for a autopilot. A post-
processor converts C4.5’s decision trees into if-statements in C so that they
can be incorporated into the flight simulator easily. Hand-crafted C code
determines which stage the flight has reached and decides when to change
stages. The appropriate rules for each stage are then selected in a switch
statement. FEach stage has four, independent if-statements, one for each
action.

When the data from the human pilots were recorded, a delay to account
for human response time was included. Since the rules were derived from
these data, their effects should be delayed by the same amount as was used
when the data were recorded. When a rule fires, instead of letting it effect a
control setting directly, the rule’s output value is stored in a circular buffer.
There is one for each of the four controls. The value used for the control
setting is one of the previous values in the buffer. A lag constant defines
how far to go back into the buffer to get the control setting. The size of the
buffer must be set to give a lag that approximates the lag when the data
were recorded.

Rules could set control values instantaneously as if, say, the stick were
moved with infinite speed from one position to another. Clearly this is
unrealistic. When control values are taken from the delay buffer, they enter
another circular buffer. The controls are set to the average of the values
in the buffer. This ensures that controls change smoothly. The larger the
buffer, the more gentle are the control changes.

2.5 Flying on Autopilot

An example of the rules created by cloning is the elevator take-off rule
generated from one pilot’s data:

elevation > 4 : 1level_pitch
elevation <= 4 :

| airspeed <= 0 : level pitch
| airspeed > 0 : pitch_up.b

This states that as thrust is applied and the elevation is level, pull back
on the stick until the elevation increases to 4. Because of the delay, the final



elevation usually reaches 11 which is close to the values usually obtained by
the pilot. pitch_up_5 indicates a large elevator action, whereas, pitch_up_1
would indicate a gentle elevator action.

A more complex case is that of turning. Stage 4 of the flight requires
a large turn to the left. The rules are quite complex. To make them un-
derstandable, they have been greatly simplified by over-pruning. They are
presented to illustrate an important point, that is that rules can work in
tandem although there is no explicit link between them. The following rules
are for the rollers and elevator in the left turn.

azimuth > 114 : right roll 1
azimuth <= 114 :

| twist <=8 : leftroll 4
| twist > 8 : no.roll

twist <= 2 : 1level_pitch
twist > 2 :

| twist <= 10 : pitchup-1
| twist > 10 : pitch_up.2

A sharp turn requires coordination between roller and elevator actions.
As the aircraft banks to a steep angle, the elevator is pulled back. The
rollers rule states that while the compass heading has not yet reached 114,
bank left provided that the twist angle does not exceed 8. The elevator rule
states that as long as the aircraft has no twist, leave the elevator at level
pitch. If the twist exceeds 2 then pull back on the stick. The stick must be
pulled back more sharply for a greater twist. Since the rollers cause twist,
the elevator rule is invoked to produce a coordinated turn. The profile of a
complete flight is shown in Figure 1.

Like Michie, Bain and Hayes-Michie (1990), this study found a “clean-up
effect”. The flight log of any trainer contains many spurious actions due to
human inconsistency and corrections required as a result of inattention. It
appears that the effects of these inconsistent examples are pruned away by
C4.5, leaving a control rule which flies very smoothly.



Take off and outward leg

Return leg and landing

Figure 1: Flight profile.

3 Learning to Achieve Goals

One of the interesting features of behavioural cloning is that the method can
develop working controllers that have no representation of goals. The rules
that are constructed are pure situation-action rules, i.e. they are reactive.
However, this feature also appears to result in a lack of robustness. When
a situation occurs which is outside of the range of experience represented in
the training data, the clone can fail entirely. To some extent, a clone can be
made more robust by training in the presence of noise. However, because
the clone does not have a representation of how control action can achieve a
particular goal, it cannot choose actions in a flexible manner in totally new
situations.

3.1 CHURPS

CHURPS (or Compressed Heuristic Universal Reaction Planners) were de-
veloped by Stirling (1995) as a method for capturing human control knowl-
edge. Particular emphasis was placed on building robust controllers that
can even tolerate actuator failures.

Where behavioural cloning attempts to avoid questioning an expert on
their behaviour, Stirling’s approach is to obtain from the expert a starting
point from which a controller can be generated automatically. The expert
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is asked to supply “influence factors”. These are numbers in the range 0 to
1 which indicate how directly a control input affects an output goal. This
is illustrated in Figure 4. Here, control action, A, has an influence of 0.8
on goal variable, X. This means that A is the main effector that influences
that value of the measure variable, X. Action A also has lesser effects on
variables Y and Z. A is also classed as the main effector for goal variable X.
From the influence matrix, control actions are grouped into three sets for
each goal variable:

Unique Effector (UE) is the only effector which has any influence on a goal
variable.

Mazimal Effector (ME) has the greatest influence over a particular goal
variable. However, other effectors may have secondary influence over
that goal variable.

Secondary Effectors (SE) are all the effectors for a goal variable, except the
main effector.

The UE, ME and SE sets are used by Stirling’s Control Plan genera-
tor (CPG) algorithm to generate operational control plans. The algorithm
assigns appropriate effectors to control various output goals in order of im-
portance. Informally, the CPG algorithm is:

Create an agenda of goals which consist of output variables
whose values deviate from a set point.
The agenda may be ordered by the importance of the goal variable.
while the agenda is not empty
select the next goal
if deviation is small then
attempt to assign an effector in the order, UE, SE, ME.
if deviation is large then
attempt to assign an effector in the order, UE, ME, SE.
examine influencee’s of the effector that was invoked and
add them to the agenda.
remove selected goal.

The selection of an effector is qualified by the following conditions:
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e A controller which is a UE of one goal should not be used as an ME
or SE for another goal.

e When choosing an SE, it should be one that has the least side-effects
on other goal variables.

This procedure tells us which control actions can be used to effect the
desired change in the goal variables. However, the actions may be executed
in a variety of ways. Stirling gives the following example. Suppose variables
X, Y and Z in Figure 4, are near their desired values. We now wish to double
the value of Y while maintaining X and Z at their current levels. Following
the CPG algorithm:

1. Y initially appears as the only goal on the agenda.

2. Y had no unique effector and since the required deviation is large, we
try to apply an ME, namely, C.

3. Since C also affects Z, Z is appended to the agenda.

4. Since Y is the current goal and an effector has successfully been as-
signed to it, Y is removed from the agenda.

5. 7Z becomes the current goal. Let us assume that the deviation in Z is
small.

6. We attempt to assign as SE to control Z. B is selected since C is already
assigned to control Y. A could have been selected, but it would have
a side effect on variable X, causing a further expansion in the agenda.

7. The agenda is now empty and terminates with the assignments {Y/C,
Z/B}, which can be read as “control goal Y to its desired state via
effector C and control goal Z to its desired state via effector B”.

This plan can be executed sequentially, by first using C to bring Y to
its desired value and then using C to bring Z to its desired value. A loop
would sample the process at regular intervals terminating each phase when
the desired value is reached. Alternatively, both actions could be executed
in parallel. The first strategy corresponds to one that might be followed by
a novice, whereas experts tend to combine well practised behaviours since
they do not have to think about them.

12
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As a model of human sub-cognitive skill, the CPG method does not cap-
ture the notion that pre-planning is not normally carried out. That is, a
skilled operator would not think through the various influences of controls
on outputs, but would act on the basis of experience. This is usually faster
than first trying to produce a plan and then executing it. To try to simulate
this kind of expert behaviour, Stirling used the CPG algorithm as a plan
generator which exhaustively generated all combinations of actions for dif-
ferent possible situations. This large database of plans was then compressed
by applying machine learning to produce a set of heuristics for controlling
the process. The architecture of this system is shown in Figure 3.

To create the input to the learning system (Quinlan’s C4.5) each goal
variable was considered to have either a zero, small or large deviation from
its desired value. All combinations of these deviations were used as initial
conditions for the CPG algorithm. In addition, Stirling considered the pos-
sibility that one or more control action could fail. Thus plans were also
produced, for all of the combinations of deviations and all combinations of
effector failures.

Stirling devised a “goal centred” control strategy in which learning was
used to identify the effectors that are required to control particular goal vari-
ables. Thus if there is a deviation in goal variable Y, a decision tree is built
to identify the most appropriate control action, including circumstances in
which some control actions may not be available due to failure. An example
of a tree for goal variable X, is shown below:

if (control A is active)
if (deviation of X is non-zero)
use control A
else
if (control D is inactive)
use control A
else
if (control F is active)
use control D
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else
use control A
else
if (control D is active)
use control D
else
use control F

Once the control action has been selected, a conventional proportional
controller is used to actually attain the desired value.

The CHURPS method has been successfully used to control a simulated
Sendzimir cold rolling mill in a steel plant. It has also been used to control
the same aircraft simulation used by Sammut et al. Like that work, the
flight was broken into seven stages. However, one major difference is that
CHURPS required the goals of each stage to be much more carefully specified
than in behavioural cloning. For example, the original specification of stage
4, the left turn was:

At a North/South distance of 42,000 feet, turn left to head
back to the runway. The turn is considered complete when the
compass heading is between 140 and 180

In CHURPS this is translated to

At a North/South distance of 42,000 feet, establish a roll of
25 +£2 and maintain pitch at 3 £5, airspeed at 100 knots £40
knots and climb speed at 1 ft/sec £5 ft/sec.

When the plane’s compass heading is between 140 and 180,
return the roll to 0 =2 and maintain all other variables at the
same values.

Recalling that the influence matrix was constructed by hand, CHURPS
requires much more help from the human expert than behavioural cloning.
However, so far, CHURPS have produced smoother and more robust con-
trollers. The question arises, can some combination of behavioural cloning
and the CHURPS method used to produce robust controllers requiring min-
imal advice from the expert?
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Figure 4: Schematic diagram of a simplified control system.

4 Learning Effects and Goals with Behavioural Cloning

In this section we discuss work on extending the framework of behavioural
cloning. A simplified scheme for a control system is assumed, such as that
shown in Figure 4. In this scheme the process is a black-box and the con-
troller is an autonomous agent whose memory contains a set of control rules
and a buffer of process variables. The original formulation of the behavioural
cloning technique requires learning the rules of the form:

action-variable < process-variables

The antecedent is a subset of the set of all process variables, and may include
state and action variables. Therefore a set of such rules is an example of
process control as depicted in Figure 4. Usually standard machine learning
algorithms for classification are used to learn a behavioural clone. The in-
duced rule-set or theory partitions the space defined by the set of all process
variables, classifying each region of this space in terms of the action typically
applied by a skilled operator. Reactive control can then be implemented by
installing the rules in a controller as in Figure 4 to output actions given
process states and actions.

However, for complex control tasks the use of “classical” behavioural
cloning presents problems (Arentz, 1995; Urbanci¢ and Bratko, 1994). What
is perhaps worse, the successful execution by a clone of even a relatively sim-
ple control task can result in behaviour which appears “mindless” (Michie,
1995).
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4.1 GRAIL

To address these shortcomings we have re-formulated behavioural cloning in
a method called GRAIL, which stands for Goal-directed Reactive Abduction
from Inductive Learning. A GRAIL controller comprises an effects level
and a goals level. Both levels are based on theories built by inductive
learning from the traces of skilled operators. In this sense the technique of
behavioural cloning is continued in the new method. However the method
extends behavioural cloning as follows. Rule sets can be hierarchical, or
structured. Also, we allow for the possibility of adding user-supplied rules
to the theories. This is mainly intended for adding high-level rules about the
control task at the goals level. Additionally we expect that user-supplied
or machine-invented predicates (“controller variables”) may be useful in ex-
tending the vocabulary for describing process variables and controller states.
These extensions could apply at both the effects level and the goals level. So
far they have not been used in our experiments, since we have concentrated
on the learning of theories for each of the effects and goals levels. The the-
ory for the combined effects and goals levels will be referred to as the “task
theory”. The method is summarised in Figure 5 as an algorithm sketch.

4.1.1 Inductive Learning of task theories

The target theories to be learned at each level are slightly different from
those of classical behavioural cloning. At the effects level we have rules of
the form:

state-variable «— process-variables

An effects theory can be thought of as approximating the operator’s model
of the effects on the process of applying certain control-actions. As such it
is a form of operator-centred process model as depicted in Figure 4.

The goals level is intended to enable the incorporation of rules referring
not only to states of the process but also states of the controller. In par-
ticular, reference to the goals of the controller is allowed. To this end we
suppose a set of controller variables distinct from the process variables of
Figure 4. The combined set of process variables and controller variables will
be referred to as “task variables.” Therefore at the goals level we have rules
of the form:

task-variable «— task-variables

16



These rules may include variables from plans or other background knowl-
edge, or they may contain only process variables. A goals theory can be
thought of as approximating the operator’s model of the goals directing their
control of the process at any given time.

As for behavioural cloning, the inductive learning step of GRAIL is done
offline from recorded traces of the execution of control tasks by skilled op-
erators. The induced rules are in the form of definite clauses, and the task
theory can therefore be understood as a logic program. Our work so far has
dealt only with rules containing propositional variables, although we discuss
below ways in which first-order learning methods may be used to improve
our approach.

4.1.2 Goal-directed Reactive Abduction

To implement control we take advantage of the fact that the theories for both
effects and goals are logic programs. The task theory is structured so that
actions which can be performed by the controller are included in the bodies of
effects rules as “abducible goals”, i.e. goals (in the logic programming sense)
which can be “made” true (by executing the associated control action). The
rules in the remainder of the task theory reduce higher-level goals to lower-
level goals using Prolog-style execution.

The controller is presumed to be an autonomous agent linked to a black-
box process which is to be controlled. The controller possesses a knowledge
base containing the task theory. This knowledge base also contains facts
about: the current state of the process (state variables); the current action
settings (action variables); possibly other sensory or perceptual information;
and a history of previously known facts. These facts are updated at prede-
fined regular time intervals. The time between successive intervals is referred
to as the sample period. The sample period is assumed to be sufficient for
execution of the task theory with respect to the updated knowledge base,
as follows.

Within each sample period a top-level Horn goal < G which represents
the controller’s current task is invoked on the updated knowledge base. Us-
ing Prolog-style execution this top-level goal is reduced to a set of low-level
goals. In our experiments to date the goals theory is constructed so as
to always reduce to a set of goal_variable = value expressions, where each
goal_variable is one of a predefined set based on a subset of the process
variables. These are the low-level goals of Figure 5.
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The GRAIL method:

Offtine stage: (Inductive Learning)
From behavioural traces learn theories for:
® goals level;
o effects level.

Online execution: (Goal-directed Reactive Abduction)
During each sample period:
e update values of state variables in knowledge base;
e update top-level goal, then use it to derive
low-level goals by backward-chaining on task theory;
e for each of the low-level goals do
e if low-level goal is:
an action expression then
action = goal value;
an effects expression then
actions = select-rule(effects expression);
an indirect-effects expression then
derive an effects expression;
actions = select-rule(effects expression);
e controller applies actions to process;
e update knowledge-base to record actions applied.

select-rule(effects = val)
Let R be the set of effects rules in knowledge base.
Find r; € R such that head(r;) is “effects = val;”, each
condition “state-variable = vals” in body(r;) is satisfied
in knowledge base and |val — val;| is minimised for all such r;.
If there is more than one such r;, pick the one with highest coverage
on training data.
return set of conditions “action-variable = val,” from body(r;).

Figure 5: GRAIL: a method for behavioural cloning.

18



The low-level goals are the “set points” for the controller. If the low-level
goal is an action expression, i.e. goal_variable relates to an action variable,
then an assignment of value to the corresponding action variable is made.
For example, the statement goal throttle = 100 leads to the assignment
throttle = 100. Otherwise, the low-level goal is an effects expression or
an indirect-effects expression. This is explained as follows.

Before learning any rules, a representation must be chosen. Process
variables are usually pre-determined. However, we must select which of
these variables to include in the effects theory. Usually, this requires some
knowledge of the domain, or is subject to a degree of trial-and-error. A
state-variable selected to be the target-attribute for learning will appear in
the heads of a set of effects rules and is referred to as an effects_variable.
An effects expression is of the form effects_variable = value. An indirect-
effects expression involves a state variable other than an effects_variable,
from which an effects expression can be derived using a user-supplied pre-
defined procedure.

For example, in our experiments in the flight domain it was found con-
venient to use the low-level goal goal_elevation, but to learn effects rules for
elevation_speed. By taking the difference

goal_elevation_speed = goal_elevation - elevation

we derive an effects expression from the indirect-effects expression in terms
of goal_elevation. The effects expression in terms of goal_elevation_speed is
then used to select an effects rule (see Figure 5).

In the remainder of this section we give examples of learning effects and
goals in the flight domain, and discuss the relations between our method
and other approaches.

4.2 Learning effects

At this level we require a rule-based model of the effects on certain state
variables of control actions. As for the goals level of our controller, the effects
rules are inductively learned from trace examples. In the case of flight the
system variables can be subdivided into a number of distinct types. For
example, the orientation of the aircraft can be described in terms of pitch,
roll and yaw. The corresponding controls are elevators, ailerons and rudder.
In our simulator the position is slightly simplified by disabling rudder (on
advice that its operation is incorrectly simulated). Consequently changes
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in yaw, or heading, are treated as side-effects of changes in roll and pitch
(twist and roll).

In a simplified formulation of an effects model we have a set of rules of
the form

Effects_variable = Effects_value <«
Action_variable = Action_value

The action variables are abducibles, in the following sense. Given a desired
effect and a rule in the model whose head matches the effect, the control
variable is assigned a value which will “cause” the required effect. The rule
body could also contain extra literals imposing conditions under which the
action will cause the effect.

As an example, take a simple theory for elevation speed defined in terms
of elevators. This was induced from instances from the trace in Figure 6.
Note that since the elevators are a rate controller, the effects variable chosen
is elevation speed. This can be linked to the more natural goal of elevation
by differencing between target and actual values as described above.

Elevation_speed = 3 <« Elevators = -0.28
Elevation_speed = 1 < Elevators = -0.19
Elevation_speed = 0 < Elevators = 0.0

Elevation_speed = -1 « Elevators = 0.9

Data was preprocessed using AWK to select variables. Learning was
carried out using C4.5. Decision trees were then converted into rules for
particular abducibles by AWK scripts, as our rules have a more complex
syntax than that generated by C4.5rules.

A similar effects rule was found for the relation between rollers and roll
speed. The picture is more complicated when it comes to other effects in
the domain, such as airspeed. Airspeed is mainly influenced by throttle,
although this is conditional on elevation and other system variables. Addi-
tionally, the time delay in the effect of throttle changes on airspeed seems to
be greater than the delay in other effects. This is the subject of our current
work on learning effects.
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Elevators, elevation and elevation speed against time
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20

40

60

80 100 120
Time steps (approx. 0.21 sec)

21



4.3 Learning goals

The problem of learning goals can be seen in terms of conjecturing which
variables must be attended to and what values must be assigned to those
variables in order to achieve the desired outcomes for system control. Clearly
this is a difficult task. However, unless goals can be specified in sufficient
detail possession of a robust and accurate effects model will not be enough
to implement the complex behaviours required. In the flight domain we
have begun to learn goals rules which determine system variables in terms
of external environment variables. An example theory of this type is given
below.

if ( Distance > -4007.66 ) Goal_elevation = 0;

else if ( Height > 1998.75 ) Goal_elevation = 20;
else if ( Height > 1918.65 ) Goal elevation = 40;
else if ( Height > 67.61 ) Goal_elevation = 100;
else if ( Distance <= -4153.4 ) Goal_elevation = 40;
else Goal_elevation = 20;

This work is in a preliminary stage, but we hope to improve the method
of learning goals in a number of ways. For example, in the example above
elevation is set relative to distance from and height above the runway. While
this may be adequate for certain manoeuvres, in general it is not a sufficiently
powerful representation, since it lacks many of the features a human pilot
might use to set goals. Below we discuss how this could be extended where
necessary to include high-level features based on background knowledge and
relational information pertaining to visual perception.

4.4 Control with effects and goals

Currently the GRAIL approach to behavioural cloning is in development.
However, we have evidence from initial investigations that it allows for
machine-learned rule-based controllers to be “cloned” from trace examples,
and that the induced theories are more compact on a lines-of-code measure
than those obtained by a previous behavioural cloning method.
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Normalised values for system variables

System variables during takeoff against time
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Figure 7: Comparing the system variables during takeoff.
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Evaluation Cloning method

(Takeoff) Traditional | GRAIL
Theory size 221 65
Examples 1804 1014
Traces 30 1

The figures in the comparison of traditional with GRAIL behavioural
cloning are for the first stage only of the standard flight plan, i.e take off and
climb to an altitude of 2000 feet then level out . Theory sizes are measured
in lines of C program code '. Note that only one trace is required for the
GRAIL method compared with thirty for the traditional method, although
the total number of examples used are of the same order of magnitude. This
is due to the different sampling schemes employed. In (Sammut et al., 1992)
an example was recorded only when the pilot changed the setting of one
of the four control variables. In contrast, due the requirement of building
an effects model for the GRAIL method, a fixed rate sampling scheme is
employed. In the current work a sample was recorded approximately once
every 0.2 seconds.

We have also used GRAIL to learn simple but general manoeuvres such
as climbs and turns. Currently we are working use GRAIL to complete
the most difficult flight plan stage accomplished by the traditional method,
namely the approach to landing. GRAIL has not yet matched the perfor-
mance of the earlier method by landing, but its approach to the runway is
reasonable and, as seen from the table below, the theory sizes are smaller.

Evaluation Cloning method

(Landing) | Traditional | GRAIL
Theory size 8542 680
Examples 8428 3072
Traces 30 )

4.5 Further Work

Whilst the flight of the GRAIL clones has not yet fully matched that of
the earlier “best clone” built by the traditional method, it does already
have the advantages described above in terms of reduced sizes of rule sets.

IThis tends to overestimate the complexity of the theories compared with their C4.5
representation but by a factor of less than two.
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We have some reason to suppose it may also prove more robust to varia-
tions in initial conditions during testing when compared to the traditional
method, although this needs to be substantiated. However, we believe it
is the possibility of extending GRAIL to use structured theories and back-
ground knowledge via first-order learning that is most likely to further im-
prove the performance of behavioural cloning.

In other related work Benson (1996) has adapted the framework of teleo-
reactive programs for agent control proposed by Nilsson (1994) to the flight
domain. This method has some very interesting aspects for agent control,
such as the modelling of durative actions and the use of a circuit seman-
tics. The machine learning component of Benson’s thesis addresses learning
action models for use in the control of a teleo-reactive agent. The agent
planning system utilises a formalism for operators called TOPs (for teleo op-
erators). The TOPs framework is closely related to effects rules in GRAIL,
but includes the ability to represent the effects of durative actions. TOPs
also allow for representation of side-effects in terms of state changes due to
the application of actions. However, the application to the flight domain
only covered a subset of the stages of the standard flight plan used in our
behavioural cloning experiments.

Interestingly, Benson (1996) noted that one difficulty with the applica-
tion of his learning method to the flight domain was the lack of any temporal
reasoning ability in the teleo-reactive formalism. Kowalski (1995) has pro-
posed a framework for combining reactive and rational agency in work which
uses abduction to realise agent actions. The method is similar to the goal-
directed reactive abduction approach of GRAIL. However, the meta-logical
approach of Kowalski provides a very general and powerful framework for
planning and reacting which uses an explicit representation for time or re-
sources. Additionally, knowledge assimilation is incorporated via the mecha-
nism of integrity constraints. Aspects of this logic programming framework
for agency could provide a basis for methods of first-order learning to be
used in behavioural cloning.

5 Constructing High-level Features

Decomposing learning into two stages is one way of structuring the problem
domain so that more effective behavioural clones can be built. Another,
complimentary approach is to construct high-level features that improve
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Table 1: Background Predicates
pos(P, T) position, P, of aircraft at time, T.
before(T1, T2) time, T1, is before time, T2.
regression(ListY, ListX, M, C) | least-square linear regression,
which tries to find for the list of
X and Y values.
linear(X, Y, M, C) linear(X, Y, M, C) :- Y is M*X+4C.
circle(P1, P2, P3, X, Y, R) fits a circle to three points,
specifying the centre (X, Y) and
radius, R

<, >, abs Prolog built-in predicates

the expressiveness of the language used to describe the control strategies.

In the original “learning to fly” experiments, only the raw data from
the simulator were presented to the learning algorithm. While these data
are complete in the sense that they contain all the information necessary to
describe the state of the system, they are not necessarily presented in the
most convenient form. For example when a pilot is executing a constant rate
turn, it makes sense to talk about trajectories as arcs of a circle. Induction
algorithms, such as C4.5, can deal with numeric attributes to the extent
that they can introduce in equalities, but they are not able to recognise
trajectories as arcs or recognise any other kind of mathematical property of
the data.

Srinivasan and Camacho (1998) have shown how such trajectories can be
recognised by making use of background knowledge with Progol (Muggleton,
1995). The program was applied to the problem of learning to predict the
roll angle of an aircraft during a constant rate turn at a fixed altitude. To do
this effectively, the target concept must be able to recognise the trajectory
as an arc of a circle. The predicates shown in Table 1 are included in the
background knowledge?.

The pos predicate is the input to the learner since it explicitly describes
the trajectory of the aircraft as a sequence of points in space. These points
are derived from flight logs. The before predicate imposes an ordering on
the points in the trajectory. The mode declarations in Srinivasan’s version
of Progol are not typical of the declarative bias found in other ILP systems.

2In practice, it is necessary to include error terms since the regression equation is
unlikely to fit new data exactly. However, we omit these here for the sake of clarity
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Srinivasan’s modes permit the user to specify that some arguments should be
lists of values collected over the entire data set. Thus, the mode declaration
for regression specifies that the first two arguments are lists which described
the sequence of pairs of coordinates for the aircraft during the turn. That
is, the coordinates from all the examples in the data set are collected. The
mode declaration causes Progol to generate these lists and invokes regres-
sion which performs a least-square regression to find the coefficients of the
linear equation which relates roll angle and radius. Regression must be ac-
companied by another background predicate, linear, which implements the
calculation of the formula. The theory produced is:

roll_angle(Radius, Angle) :-
pos(P1, T1), pos(P2, T2), pos(P3, T3),
before(T1, T2), before (T2, T3),
circle(P1, P2, P3, _, _, Radius),
linear(Angle, Radius, 0.043, -19.442).

The circle predicate recognises that P1, P2 and P3 fit a circle of radius,
Radius and regression finds a linear approximation for the relationship be-
tween Radius and Angle which is:

Angle = 0.043 x Radius — 19.442

The _ arguments for circle are dont cares which indicate that, for this
problem, we are not interested in the centre of the circle.

This example illustrates an ILP system’s ability to use background knowl-
edge to generate high-level features that permit the learning system to refer
to meaningful components of a flight. Just as we can describe turn as above,
we could also apply linear regression to fit a line to a pilot’s approach to the
runway, thus discovering the glide slope used. In the following section, we
describe an alternative method of invoking complex background knowledge.

5.1 Refinement Rules
Cohen (1996) introduced refinement rules as a method for constructing new

literals to be added to clauses during a general-to-specific search. In his
FLIPPER program, Cohen used a restricted second order theorem prover
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to interpret these rules. The advantage of refinement rules is that they can
give FLIPPERS users fine control over how background knowledge is applied
in order to create new literals to refine a clause. However, the second-order
theorem prover is limited to a simple function-free language.

The system described here is a component of iProlog (Sammut 1997).
This is an ISO compatible Prolog interpreter with a variety of machine
learning tools embedded as built-in predicates. Since the full power of Prolog
is available, the refinement rules we implement can invoke arbitrary Prolog
programs.

Two types of refinement rule may be defined. A head rule has the form:
(A, Pre, Post)

where A is a positive literal, Pre is a conjunction of literals and Post is
a set of positive literals. A body rule has the form:

(« B, Pre, Post)

where B is a positive literal and Pre and Post are as above.

There must only be one head rule. This indicates that A should be used
to create the head of the clause being learned, provided that the condition
Pre is satisfied. After A has been constructed, the literals in Post, are
asserted into Prologs database. There may be any number of body rules.
The literals generated by these rules can be added to the body of the clause
under construction. Literals in the precondition of these rules can invoke
any Prolog program.

Suppose we wish to create a saturated clause (Rouveirol & Puget 1990;
Sammut 1981, 1986) based on the same data as Srinivasan and Camacho.
The left-hand side of the following rule is the template for the head literal.

roll_angle(Radius, Angle)
where
true.

The where part of the rule is the precondition. Refinement rules are
invoked in a forward chaining manner. The head rule matches an example
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fact, say, roll_angle(1000, 2). Since there are no preconditions, the head of
the new clause is created.

The refinement rules for body literals are as follows:

pos(P, T)
where
pos(P, T)
asserting
time(T) .

T1 < T2

where
time (T1),
time (T2) .

circle(P1, P2, P3, X, Y, Radius)

where
pos(P1, ),
pos(P2, _),
pos(P3, _),

P1 \= P2, P1 \= P3, P2 \= P3.

:— Angle is M * Radius + C
where
roll_angle(Radius, Angle),
coefficients(M, C).

coefficients(M, C) :-
findall(X, pos(point(X, Y, Z), T), Xlist),
findall(Y, pos(point(X, Y, Z), T), Ylist),
regression(Ylist, Xlist, M, C).

The first rule introduces the pos literal. That is, a literal of the form
pos(P,T) is introduced into the clause if there is a corresponding fact in the
example database. After creating the literal, the postcondition is time(T)
This is useful as a typing mechanism for later refinement rules.

The time predicate is used by the next refinement rule. This introduces
the be fore literal. In this case, we simply use numeric less than to represent
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Figure 8: Polygonal approximation of a trajectory

before. The assertion from introducing the pos literal ensures that, in this
case, only comparisons between times are permitted.

We assume that predicates for circle and regression have already been
defined. the circle literal in introduced if there are three distinct position
facts in the example database.

The final refinement rule introduces a linear relation between roll angle
and radius. Note that the preconditions invoke a call to the regression
program. The coefficients predicate collects the X and Y wvalues of the
aircraft’s position and passes the lists to the regression program. Again, we
have left out error terms to simplify the discussion.

This refinement rule mechanism is implemented in iProlog and can be
used, as Cohen originally intended, that is to generate literals for a general-
to-specific search. They can also be used to produce a saturated clause to
be used in a specific-to-general search. This is the manner in which they
are currently used. The thing to note is that refinement rules provide a
mechanism for invoking quite complex background knowledge.

5.2 Recognising Trajectories

Geometric shapes such as circles and lines are suitable for simple trajectories
like turns and climbs, but very often trajectories are much more complicated
and therefore more difficult to describe and match. Pearce and Caelli (1997)
have devised an instance-based learning algorithm for recognising trajecto-
ries.

The first step in their algorithm is to fit a polygonal approximation to a
curve (Figure 8).

The system then extracts relations between the lines fitted to the curve.
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For example,

angle(pa, p3, 92)

indicates the angle between two of the lines. Each instance of a trajectory
is stored in the system’s database. Identification of mew trajectories is
performed by a constrained graph matching algorithm that is capable of
handling relations.

Because of the flexibility offered by the refinement rules described in ear-
lier. It is possible to include this kind of case-based matching as background
knowledge. This, where we previously had a circle predicate for identify-
ing a circular trajectory, we can also have a more sophisticated matching
algorithm for irregular trajectories.

6 Combining Machine Learning and Advice Tak-
ing

Although many skills are performed subconsciously, it may still be possible
to verbalise some aspects of the skill. For example, as well as acquiring the
basic motor skills for controlling an aircraft at a particular instant, pilots
must also learn to to plan flights, to navigate according to the plan, they
must learn about way points and landmarks, etc. Thus, while the low-level
skills that a pilot employs may not be available to introspection, higher-level
tasks may be. It is therefore reasonable to acquire behaviours be a mixed
strategy of machine learning and advice taking.

Shiraz (Shiraz & Sammut, 1997) has developed a knowledge acquisition
system for piloting aircraft in a flight simulator that combines the interactive
method of Compton’s Ripple-down Rules (Compton & Jansen, 1988) with
a machine learning algorithm. Shiraz’s system, called Parvaz, behaves as
follows:

e The autopilot flies the aircraft.

e If the aircraft does not follow the desired trajectory, the human trainer
can intervene in either of two ways:

1. The trainer may enter a rule editing environment, permitting new
control rules to be constructed or
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2. the trainer may taken over the flight and provide examples of the
correct behaviour.

We will briefly describe ripple-down rules before reviewing Shiraz’s work.

6.1 Ripple-down Rules

The basic form of a ripple-down rule is as follows:

if condition then conclusion because case except
if condition then conclusion because case except
if ...

else if ...

Initially an RDR may consist of the single rule:
if true then default conclusion because default case

That is, in the absence of any other information, the RDR recommends
taking some default action. For example, in a control application it may
be to assume everything is normal and to make no changes. If a condition
succeeds when it should not, then an exception is added (ie. a nested if-
statement). Thus the initial condition is always satisfied so when the do
nothing action is inappropriate, an exception is added. If a condition fails
when it should succeed, an alternative clause is added (i.e an else-statement).
The new condition in the exception or alternative clauses is easy to deter-
mine.

With each condition/conclusion pair, RDRs store the cornerstone case,
i.e. the case that caused the new condition to be created. When a new
cases is incorrectly classified, it is compared with the cornerstone case of
the incorrect condition and the differences are used to construct the new
condition. Usually, the difference list is presented to the expert so that he
or she may select the most relevant differences or generalise the conditions.
That is, the trainer, never has to explicitly construct a new rule to insert in
to the RDR, instead, the knowledge acquisition system present the trainer
with two cases and asks which features distinguish the cases. The system
then builds the rule and adds it into the appropriate place in the RDR.
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6.2 Parvaz

A ripple-down rule system has been added to the same flight simulator that
was used by Sammut et al (1992) in their “Learning to Fly” experiments.
Four RDR’s are used to control each of the four control actions. Initially
each RDR consists of the default rule described above. That is, do nothing
unless circumstances warrant an action.

Starting on the runway, the aircraft will do nothing, so the trainer in-
tervenes and creates a rule to increase the throttle to 100%. This rule will
cause the plane to travel down the runway, but when it does not lift off
because no flaps have been applied and the stick has not been pulled back,
the trainer again intervenes. The aircraft will then continue to climb. When
it fails to level out, the trainer must provide further advice to the autopilot.

In each intervention, the system displays to the trainer the instrument
readings at the time the flight was paused. It also displays the readings
for the situation that caused the currently active rule to be created. By
indicating the significant differences between the two sets of readings, the
trainer assists the RDR system in building a new rule.

Shiraz tested the system by asking several subjects to building autopilots
for the same flight plan as defined by Sammut et al (1992). The subjects
were able to construct rules “manually” for most of the flight. However,
some subjects found it was easier, in particularly difficult parts of the flight,
to simply take over control and provide examples of the appropriate actions.
That is, many stages of the flight are sufficiently simple that control rules can
be easily verbalised, however, actions performed in other stages, especially
landing, are much more difficult to describe and so teaching by example
becomes easier.

In the next section we describe Shiraz’s learning algorithm.

6.3 Learning Ripple-down Rules

The learning algorithm also builds ripple-down rules. This permits the au-
tomated learner to extend RDR’s built manually and vice versa. When the
autopilot makes a mistake, the trainer provides a single trace of the correct
behaviour. The data are segmented and preprocessed just as in Sammut et
al (1992). The system executes the RDR’s for each control action on the
trace data, where the RDR’s conclusion differs from the action taken by the
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trainer, a new rule is added to the RDR to correct the error. The method
for creating a new rule is now described.

Attributes are assigned a priority for each action in order to implement a
heuristic to limit the number of conditions in a rule. Initially, all attributes
may be given equal priority. For each attribute in the priority list, the
algorithm compares the attribute’s previous direction with its next direction.
If there is a change in direction (e.g. it was increasing and becomes steady)
then:

1. Create a test for the attribute. The test is based on the attribute’s
current value and its previous direction. The test always has the form:

attribute op value

where op is “>” if the previous direction was increasing and “<” if it
was decreasing. Value is the value in the current record.

2. If the new test succeeds for the new case and fails for the cornerstone
case, the test is added to the new rule, otherwise the test is discarded.

3. Increment the attribute’s priority.

4. If the number of tests in the condition reaches a user defined maxi-
mum, scan the rest of the attributes and just update their priorities
if their direction has changed. The maximum was set to 3 for these
experiments.

Intuitively, the priority reflects a causal relationship between a variable
and an action and is related to Stirling’s influence matrix.

Shiraz found that all of his subjects were able to construct working con-
trollers by a combination of learning from behavioural traces and and ripple-
down rule’s semi-automatic knowledge acquisition method. His subjects
ranged from novices who were not previously familiar with flight simulators
or RDR’s to those skilled in flying game simulators and who understood
RDR’s.

7 Discussion

In this paper, we have reviewed recent research in the application of sym-
bolic machine learning techniques to the problem of automatically building
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controllers for dynamic systems. We have shown that by capturing traces
of human behaviour in such tasks, it is possible to build controllers that are
efficient and robust. This type of learning has been applied in a variety of
domains including the control of chemical processes, manufacturing, schedul-
ing, and autopiloting of diverse apparatus including aircraft and cranes.

Recent extensions to the original formulation of behavioural cloning have
the common theme of adding greater structure to the representation of the
problem. The style of control achieved can be characterised by Nilsson’s
term teleo-reactive, which means that the controller is goal-directed, taking
into account and reacting to the current environment. Further progress in
this direction is possible, we believe, by continuing to improve the represen-
tations and structures available to the learner, to take greater advantage of
the abilities of the trainer.
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