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Cost-based analysis of probabilistic programs
mechanised in HOL

Orieta Celiku∗ and Annabelle McIver†

Abstract. We provide a HOL formalisation for analysing expected time bounds
for probabilistic programs. Our formalisation is based on the quantitative program
logic of Morgan et al. [21] and McIver’s extension of it [17] to include performance-
style operators. In addition we provide some novel results based on probabilistic
data refinement which we use to improve the utility of the basic method.

1. Introduction

Randomisation is often used to improve overall efficiency in programs, or
to solve programming problems where standard techniques fail — typical
situations include symmetry breaking in networks, preventing potentially
deadlocking behaviour. The underlying probabilities contributing to such
programs’ computations mean that many of their properties are cost-based,
viz. quantified properties such as the probability that some goal is estab-
lished, or the “expected” or “average” time it takes until it is. Mechanising
formal techniques for analysing the latter property forms the principal topic
of this paper.

Mechanising a theory refers to the creation of a machine readable logical
formalisation, and there are two main reasons for doing so. First, if a math-
ematical theory is formalised within a consistent logic by making definitions
and then deriving their consequences (contrast axiom assertion), then it has
a strong assurance of consistency. The HOL theorem prover [10] provides
tool support for this “definitional approach” to mechanisation, and as a re-
sult our probabilistic theories for analysing expected running times are as
consistent as the base higher-order logic (which in turn is as consistent as
ZF set theory [10]).

Second, once mechanised, we can use the theories to implement “auto-
mated proof tools” to support reasoning about probabilistic programs. For
example, verifying the cost-based properties of probabilistic programs typi-
cally involves much numerical calculation, and this can be formally carried
out by a straightforward proof tool that works by rewriting with relevant
theorems about real numbers. Since HOL is a theorem prover in the LCF
family, it provides a full programming language (ML) for the user to write
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automatic proof tools such as these [9]. Consistency is enforced by the logi-
cal kernel, a small module that is solely empowered to create objects of type
“theorem”, which it does by applying the inference rules of higher-order
logic.

This paper makes three main contributions to both programming theory
and practice.

◦ We create a HOL mechanisation of a theory for the probabilistic “weak-
est precondition semantics” for a small programming language pGCL,
which includes probabilistic choice and nondeterminism; the latter is
retained from standard programming theories and is crucial for ab-
straction and program refinement. The weakest precondition seman-
tics is based on the quantitative program logic of Morgan et al. [21]
which allows quantitative properties to be expressed via real- rather
than Boolean-valued terms, and has a well-developed calculus which
is suited to calculation of numeric quantities. Our mechanisation is
based on Hurd’s earlier formalisation of pGCL [13] which differs only
in its treatment of nondeterminism — a difference which is necessary
for our application to expected running times.

◦ We formalise a theory for a derived semantic operator ∆ [17], which
expresses the expected time for an iterative program (or system) to
terminate. Based on the probabilistic weakest precondition theory we
implemented an automatic proof tool which takes as input a program,
and a “probabilistic invariant”, and generates verification conditions
to prove upper bounds on expected running times. The tool proves as
many of these verification conditions as it can, simplifies the remainder
and then returns them to the user as subgoals in an interactive proof.

◦ We introduce two novel proof rules based on the refinement of prob-
abilistic programs, instances of which are suitable for implementation
in a mechanised proof tool. We use these rules to propose a general
method for analysing expected running times: in short the essential
probabilistic properties underlying program termination are abstracted
away obtaining a simpler “abstract” program which is more amenable
to direct ∆ analysis. The relation between the running times of the
abstract and concrete systems is guaranteed by program refinement.

In addition we illustrate our mechanisation with several examples, including
Herman’s self-stabilisation protocol [11].

The paper is organised as follows. Sec. 2 comprises a summary of the basic
theory for the quantitative program logic for pGCL, and a description of its
formalisation in HOL, including a short overview of Hurd’s work on which
ours depends. Sec. 3 introduces the formalisation of the semantic operator
∆ and derives some of its properties necessary to implement our automated
tool, and in Sec. 4 we illustrate the ideas with some examples. In Sec. 5 we
consider how to improve the efficiency of the mechanised analysis for more
complicated programs, and finally in Sec. 6 we use the technique to analyse
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Herman’s self-stabilisation ring protocol. All our theorems except for Lem. 3
have been proved in HOL using the definitional theories described in Sec. 2
and Sec. 3, and so we do not supply the detailed proofs. The proof of Lem. 3
is set out in full in the appendix.

We use S for an underlying (countable) state space. S denotes the set of
probability distributions over S: a probability distribution is a normalised
function from S into the real interval [0, 1]. We use “.” for function appli-
cation, so that if f : A → B, and a has type A then f.a has type B.

2. Probabilistic semantics

Given a program Prog and predicates pre and post, the standard interpre-
tation of the judgement pre ⇒ wp.Prog.post using Dikstra’s weakest pre-
condition semantics is, if program Prog is executed from any initial state
satisfying pre, then it is guaranteed to terminate in a state satisfying post.
In this view programs are identified with predicate transformers, mapping
postconditions to preconditions. Moreover, the wp semantics has consid-
erable calculational appeal — rather than reasoning operationally about
detailed execution paths, precise static properties of programs are articu-
lated by wp judgements; syntactic rules eliminate “wp”, reducing proofs
of correctness to proofs in predicate calculus. In addition, nondeterminism,
the mathematical notion underlying abstraction and refinement, is naturally
accommodated. As we explain next, the probabilistic generalisation of wp
enjoys both these qualities.

Unlike standard programs, probabilistic programs do not produce definite
final states — although any single execution of such a program will result
in the production of some specific state, which one in particular might well
be impossible to predict (if its computation is governed by some random
event). However over many executions the relative frequencies with which
final states occur will be correlated with the program’s known underlying
random behaviour. Thus operationally we may model programs as functions
which output probability distributions over final states.

Nondeterminism is still relevant even in the probabilistic context to give
some leeway in precision when specifying and reasoning about those final
distributions: it is unlikely that a specific probabilistic branching can be
implemented to great accuracy, and often it is possible to prove a particular
(probabilistic) property by citing only incomplete information. For example,
we could specify a biased coin by stipulating merely that heads (denoted
head) should appear “with probability at least 2/3” after each flip. Of
course many coins satisfy this criterion and the “abstract” or “specification
program” should be able to represent them all — nondeterminism makes
this possible.1

1 Here we take the view, proposed by for example Morgan [18] and Back [2] that there is
no essential difference between specifications and implementations except in their degree
of abstraction: they are all programs.
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Rather than formalising the operational model based on functions from ini-
tial states to distributions, we instead formalise the associated quantitative
program logic [21] which provides the means to specify and prove proper-
ties of those final distributions. Terms in the logic are interpreted as real-
rather than Boolean-valued functions which enables the numeric frequencies
of probabilistic events to be expressed. To specify the above bias in coins
— that the probability of terminating in the state head is at least 2/3 —
we are able to use a probabilistic “wp” statement for a suitably generalised
definition (which we call dwp) and that of implication (�, given below):

2/3 � dwp.coin.[head] . (1)

The term now associated with the precondition is a real-valued function
returning 2/3 when evaluated at any state, and [head] represents a charac-
teristic function that returns 1 if the state is head, and zero otherwise. Thus
we have weakened “guaranteed to terminate” to “guaranteed to terminate
with some probability”. More generally we allow arbitrary functions for
the pre- and postconditions — we call them expectations, and we identify
probabilistic programs with expectation transformers.

To illustrate this idea, consider an implementation of the above biased
coin:2

coin′ =̂ if (c = head) then c := head 2/3⊕ c := tail
else c := head 3/4⊕ c := tail

The program coin′ outputs two different distributions depending on c’s initial
state (though both satisfy the specified bias in (1)) — if c is initially showing
a head then it will do so again with probability 2/3, but more favourably,
with probability 3/4 if it is initially showing a tail. Now let Reward be the
expectation

Reward =̂ λc. if (c = head) then 2 else 1 ,

which is the “random variable” rewarding 2 for final states in which c comes
up head and otherwise rewards 1. With these definitions we can compute the
expected final value of Reward — though it does depend on the initial state.
If c is initially head then it is the weighted average of Reward with respect
to the distribution (head, tail) = (2/3, 1/3), which is 2×2/3+1×1/3 = 5/3.
On the other hand if c is initially tail then it is the weighted average of
Reward with respect to the distribution (head, tail) = (3/4, 1/4), which is
2 × 3/4 + 1 × 1/4 = 7/4. Thus we can say that the pre-expectation of coin′
with respect to the post-expectation Reward is the function

λc. if (c = head) then 5/3 else 7/4 ,

2 We are allowing ourselves the luxury of absolute precision for this example.



5

and coin′, regarded as an expectation transformer has thus transformed
Reward — i.e. the actual reward on termination — into the expected reward,
which is all that can be reliably predicted prior to program execution.

In general when nondeterministic choice is present as well, there may be a
range of final distributions satisfying a specification. In (1) above, for exam-
ple, all output distributions of the form (head, tail) = (p, 1−p), with p ≥ 2/3
would need to be considered.3 We account for this in the transformer se-
mantics by quantifying the expected value of all relevant final distributions.
Morgan et al.’s original quantification took the minimum, but for our ap-
plication we will also need to use the maximum. We give details below,
but for the moment we summarise the ideas introduced so far with the fol-
lowing definition in which we introduce two mappings dwp and awp which
identify probabilistic programs as expectation transformers. The two maps
differ only in their interpretation of nondeterminism — in the former case
the transformer gives the minimum expected reward, whereas in the latter
it gives the maximum.

Definition 1. (Expectation transformer semantics) Given a prob-
abilistic program Prog which maps initial states in S to final distributions in
S, and an expectation A, a non-negative real-valued function of S, the great-
est guaranteed expected value of A after execution of Prog from initial state
s with respect to the final distributions of Prog.s is given by dwp.Prog.A.s.
The greatest achievable expected value of A after execution of Prog from
initial state s is given by awp.Prog.A.s.

To illustrate, using the specification (1) of the biased coin, the expected
value of Reward with respect to the outcomes of any such 2/3-biased coin
must exceed 5/3 (in any initial state), since p×2+(1−p)×1 ≥ 5/3 whenever
p ≥ 2/3. Thus dwp.coin.Reward = 5/3. For similar reasons, the expected
value cannot exceed 2, thus awp.coin.Reward = 2.

It was shown by Morgan et al. [21] that an operational semantics of prob-
abilistic programs in terms of functions delivering probability distributions
over final states is mathematically equivalent to the above transformer se-
mantics. However as the transformer semantics offers appealing simplicity
and clarity for analysis, it is what we formalise in HOL.

2.1 Expectations, pGCL and its transformer semantics

In the rest of this section we describe the HOL formalisation of dwp and
awp with respect to a small programming language called the probabilistic
guarded commands — pGCL — an extension of Dijkstra’s original guarded
commands, with the addition of probabilistic choice, denoted p⊕ as above.
The semantic mapping dwp has already been formalised by Hurd [13], and
we draw extensively on his theories. Our contribution is to formalise awp in
a similar manner.
3 We are also assuming that the program coin terminates.
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We begin with Hurd’s formalisation of expectations which is based on the
positive reals [13]. The positive reals are obtained by completing the non-
negative reals with an introduced term infinity — denoted by ∞ — which
dominates all other finite values. A consequence is that the positive reals
become a complete partial order4 so that all increasing sequences now have
a limit (even though it might be ∞).

Within HOL the positive reals are created as a new higher-order logic type
posreal, and include the new term ∞. Arithmetic is also extended to the
completed domain and the usual arithmetic operations from the reals (+,
×, etc.) are extended to preserve the continuity of the operators, so for
example

1/∞ = 0 and ∀x • x �= ∞ ⇒ ∞− x = ∞ .

Numerical calculations on positive reals can be carried out automatically
using the HOL simplifier.

Next the expectations theory [13] is built from the positive reals — ex-
pectations are functions from the state space to positive reals. The state
space is modelled as a type variable α (which can be instantiated to any
higher-order logic type), thus the expectations themselves are of type:

α expect =̂ α → posreal .

The expectation theory defines several useful constants and operations on
expectations, which are pointwise liftings of the corresponding ones on pos-
itive reals. Some of these are listed in Fig. 1. As with the positive reals, the
expectations form a complete partial order.

implication A � A′ =̂ ∀s • A.s ≤ A′.s
maximum A 
 A′ =̂ λs • A.s max A′.s
minimum A � A′ =̂ λs • A.s min A′.s
addition A + A′ =̂ λs • A.s + A′.s
subtraction A − A′ =̂ λs • A.s − A′.s
multiplication A × A′ =̂ λs • A.s × A′.s
lifting standard predicates [P ] =̂ λs • ifP.s then 1 else 0
lifting scalars c =̂ λs • c
scaling cA =̂ λs • c × A.s

where A, A′ : α expect, P : α → B, and c : posreal .

Fig. 1: Operations on expectations.

Next we summarise Hurd’s formalisation of pGCL in HOL. States are
modelled by the higher-order logic type

state =̂ string → Z ,

4 A complete partial order is a partially-ordered set in which all ordered sequences of
elements have a least upper bound in the set.
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representing a map from variable names to integer values.5 The following
definition creates a new state from an old state by making a variable assign-
ment:

assign v f s =̂ λw • if w = v then f.s else s.w ,

where v is a variable name and f an integer-valued state function.
State expectations themselves are now of type state expect. We will sup-

press lambdas and states when writing state expectations; for example, x+3
will stand for λs • &(s.“x” + 3), where “&” converts an expression over in-
tegers into a posreal expression.6 In some examples, we will appear to be
using program variables of types other than Z; however, those types (for
example B) have direct translations into the integers.

The language pGCL is defined as a new higher-order datatype which in-
cludes assignment, sequential composition, probabilistic choice and nonde-
terministic choice (see Fig. 2). Nondeterministic choice ( [] ) is a control
construct which allows an “unpredictable agent” to decide which of the two
argument commands to execute — it can be used to specify ranges of out-
put distributions for example. On the other hand, the probabilistic choice
(p⊕) chooses randomly between its two arguments according to the speci-
fied weighting. Since the probability argument p is modelled as a function
state → posreal 7, the choice of probability is explicitly allowed to depend
on the state, and thus ordinary conditional choice is a special case.

The semantics for pGCL is given in terms of expectation transformers,
which are functions from expectations to expectations; their HOL type is

α transformer =̂ α expect → α expect .

Next we define on the pGCL datatype a semantic map awp which produces a
state expectation transformer for each language construct: standard assign-
ments induce substitution of variables in the expectations, whereas proba-
bilistic choice essentially averages over the possible final results. The inter-
pretation of nondeterminism implies that the agent is an “angel”, seeking
to maximise the expected reward. We set out the exact definitions for awp
with respect to pGCL in Fig. 2, though we use “syntactic sugared” versions
for each construct, distinguishing for example conditional and probabilistic
choice. Hurd’s dwp-semantic mapping gives a similar semantics for pGCL
— indeed it is essentially the same, differing from awp only in its “demonic”
treatment of nondeterministic choice as a “minimising agent”, a distinction
we note in Fig. 2.

The difference between the angelic and demonic interpretations is illus-
trated by considering Prog =̂ x := 0 [] x := 1. For example, dwp.Prog.[x = 0]
5 It would be possible to treat the state space more generally, for example as a tuple
(see [5]), to allow for program variables of different types; however, this would add much
complexity to the calculations.
6 Conversions into positive reals often involve proving side conditions such as “the de-
nominator is non-zero”, and in general showing that the expression is non-negative.
7 The semantics of the language guarantees that this function is bounded by 1 (see [13]).
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awp.skip.A =̂ A
awp.(x := E).A =̂ A[x := E]

awp.(r; r′).A =̂ awp.r.(awp.r′.A)
awp.(r p⊕ r′).A =̂ p × awp.r.A + (1−p) × awp.r′.A

awp.(r0@p0 | . . . | rn@pn).A =̂ p0 × awp.r0.A + · · · + pn × awp.rn.A
awp.(r [] r′).A =̂ awp.r.A 
 awp.r′.A

awp.(if B then r else r′).A =̂ [B] × awp.r.A + [¬B] × awp.r′.A
awp.(do B → r od).A =̂ (µX • [B] × awp.r.X + [¬B] × A)

E is an integer-valued state function, and the update is carried out using assign.
p0, . . . , pn in the definition of generalised probabilistic choice sum to 1.
The term (µX . . . ) in the definition of (do . . . od) refers to the least fixed point
with respect to �; it is guaranteed to exist since the expectations form a complete
partial order.

Note that dwp, the usual demonic interpretation (formalised by Hurd) differs
only for nondeterministic choice — it minimises rather than maximises, thus
dwp.(r [] r′).A =̂ dwp.r.A � dwp.r′.A. All other definitions for dwp can be rendered
from the above list, syntactically replacing “awp” by “dwp”.

Fig. 2: Probabilistic awp semantics.

= 0, whereas awp.Prog .[x = 0] = 1. Thus a minimising demon presiding over
the nondeterministic choice aims to avoid the postcondition (by selecting the
branch “x = 1”). A maximising angel, on the other hand, would instead
helpfully choose “x = 0”. Within a context of such angelic behaviour a given
postcondition will only fail to be established if all possible selections would
fail to establish it. In more general contexts the angel seeks to maximise the
expected result as far as it can. Observe however that the angel and demon’s
choices are complementary, a situation formalised by the next theorem.

Theorem 1. (Bounded duality of awp and dwp)

∀A, c • c �= ∞∧ A � c ⇒ awp.r.A + dwp.r.(c − A) = c ,

where r is any loop-free program (i.e. contains no occurrence of do . . . od).

Thm. 1 says that, at least for loop-free programs, dwp and awp determine
each other, with the “−A” in the dwp expression essentially turning all
instances of minimisation into maximisation. Despite this duality, dwp-
interpretations often make proofs easier to do, which is one reason we retain
it. Another is program refinement. Refinement defines a partial order on
the space of programs such that one program Prog′ is more refined than
another Prog — denoted Prog  Prog′ — if Prog′ is more concretely specified
than Prog, equivalently if it exhibits a smaller range of nondeterminism. A
program is deterministic if it cannot be refined any further. It turns out
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that within the dwp-semantics of programs this idea is exactly characterised
[21], and so we use dwp (and not awp) to formalise refinement.

Definition 2. We say program Prog is refined by program Prog′, or Prog 
Prog′, if and only if,

∀A • dwp.Prog.A � dwp.Prog′.A .

Def. 2 states that the more refined a program is, the more dwp properties
it satisfies. For example, the following refinement holds

x := 0 [] x := 1  x := 0 1/2⊕ x := 1 ,

since the LHS merely guarantees that the final state satisfies (x = 0)∨ (x =
1), whereas the RHS in addition guarantees that (x = 0) is satisfied with
probability 1/2. Another way to think about this refinement is in terms of
implementing a specification: a valid implementation of a nondeterministic
choice is to use the outcome of a random coin flip. Probabilistic choice
however cannot similarly be “refined away” — it is clear, for example, that
the program x := 0 1/2⊕ x := 1 has no proper refinements, because if it did
we would be claiming counter intuitively that a biased coin is more refined
than a fair one. Using Thm. 1 we can show that refinement corresponds to
decreasing awp judgements, for bounded expectations.

Corollary 1. (Refining dually)

∀A, c • c �= ∞∧ A � c ⇒ (r  r′ ⇒ awp.r.A � awp.r′.A) ,

for loop-free programs r and r′.

2.2 Healthiness conditions

monotonic t =̂ ∀A1, A2 • A1 � A2 ⇒ t.A1 � t.A2

feasible t =̂ t.0 = 0
sup-additive t =̂ ∀A1, A2 • t.(A1 + A2) � t.A1 + t.A2

subtraction t =̂ ∀c, A • c �= ∞ ⇒ t.(A − c) � t.A − c
scaling t =̂ ∀c, A • t.(cA) = c(t.A)

up-continuous t =̂ ∀A • t.(
A) = 
(λA : A • t.A)
sup-linear t =̂ sup-additive t ∧ subtraction t ∧ scaling t
ahealthy t =̂ feasible t ∧ sup-linear t ∧ up-continuous t

t is a transformer, and A a directed set.

Fig. 3: Properties characterising healthy transformers.

In his original presentation of the predicate transformers [7] Dijkstra stated
a number of axioms satisfied by programs-as-transformers — these so-called
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“healthiness conditions” are used to prove properties about programs. Sim-
ilarly, there is a set of healthiness conditions for probabilistic programs first
discovered by Morgan et al. [21]. We reproduce some of them here in Fig. 3,
adapted to the awp-interpretation, and in fact they can be seen as generali-
sations of the standard properties. For example, sup-additivity (a variation
of additivity of expectation operators from probability theory) generalises
disjunctivity in standard contexts. In general, healthiness conditions are
invaluable for proving properties about programs — monotonicity, for ex-
ample, allows us to refine a program by refining individual sub-programs
[2, 18], and it will guarantee the existence of the least fixed points to come.

We end this section by proving that the awp-semantics produces healthy
transformers.

Theorem 2. (awp gives rise to healthy transformers)

∀r • ahealthy awp.r .

Proof: Structural induction over pGCL.

Hurd proved a similar set of healthiness conditions for the dwp-transformers,
whose principal difference was that dwp-transformers are sub-additive8, ra-
ther than sup-additive.

In this section we have formalised the basic infrastructure for proving
probabilistic properties about pGCL programs. Our next task is to formalise
a derived operator for analysing expected running times, to which we now
turn.

3. Upper bounds on expected running times

In this section we introduce our verification method for analysing expected
running times of (nondeterministic) iterative programs. We begin with some
intuition. Given a program step in pGCL, and a predicate G, we write

do ¬G → step od (2)

to represent the looping program which executes step repeatedly until G is
established (or continues to loop indefinitely if G cannot be established).
Our goal is to estimate the expected number of complete iterations of step
required until that happens (with an infinite result in cases when it never
does). Given the formal infrastructure now available to us, an obvious solu-
tion might be to introduce a fresh variable n into (2), whose job is to count
the iterations: initially it would be set to 0, and then would be incremented
after each complete execution of step. Given a post expectation n 9 from
8 t is sub-additive if for any expectations A1 and A2, t.A1 + t.A2 � t.(A1 + A2).
9 Recall the idiom that n used as an expectation returns the value of n at state s when
evaluated there.
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Def. 1 we can attempt to express the expected number of iterations as the
pre-expectation:

awp.(n := 0; do ¬G → step;n := n + 1 od).n . (3)

Here the angelic interpretation makes sure that any nondeterministic choices
in step are resolved to keep the loop iterating for as long as possible ensuring
that n is as large as the worst case on termination, with a result of ∞ if that
is arbitrarily large. This is in line with our desire to analyse tight upper
bounds.10 Unfortunately, there are some technical issues to do with well-
definedness, since we would potentially be taking the expected value of an
unbounded function; moreover, the semantics for loops as least fixed points
is not sound in cases of nontermination.11

However, the idea motivates an approach which avoids altogether the in-
troduction of an explicit fresh variable n and the related problems of unde-
finedness and nontermination — that is the approach we adopt. Following
McIver [17] we assume a “system” composed of two parts:

¬G → step , (4)

where as above step is a loop-free program of pGCL, and G is a predicate
— again it carries the same information as (2), but we use it only in the
restricted context of expected running times.12 We now define the worst
expected number of complete executions of step required to establish G.

Definition 3. (∆) The (worst) expected running time for a system defined
by step to achieve satisfaction of predicate G is defined as the least fixed point
of a function that accumulates:

∆(G, step) =̂ (µX • [¬G] × awp.step.(1 + X)) .

Since the expectations form a complete partial order and, by Thm. 2 awp.step
is monotone within that order, ∆(G, step) always exists (even though it
might be ∞).

For example, when G is “x is 1” and step is x := 0 1/2⊕ x := 1, then
∆(G, step) is 2 when evaluated at x = 0, which agrees with our intuition
that step must be executed on average twice for x to be set to 1; on the
other hand ∆(false, step) is always infinite, as false can never be satisfied.
10 An ∞ result can be expected if the loop does not terminate with probability 1, or
(as in the symmetric walk on the real line in Sec. 4) if the expected number of steps is
arbitrarily large.
11 The transformer semantics for loops is a least fixed point, which gives results that are
too low in the case of nontermination. An alternative definition as a greatest fixed point
would give results that are too high in general. See [15] for details.
12 We avoid the use of “do . . . od” here as we wish to develop some tailored transformers
for performance; more generally, this notation fits in with a broader theoretical theory
including probabilistic temporal logic which is useful for relating expected running times
to other temporal notions.
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McIver [17] showed how this definition does indeed formalise the expected
number of step iterations, by considering probability distributions over “com-
putation paths”. Moreover, it can also be shown that if G can never be satis-
fied by executions of step then ∆(G, step) is ∞, and conversely if ∆(G, step)
is finite then the probability of satisfying G by executing step is 1.13

We end this section by setting out some some properties of ∆. Our first
property says that the more we want to achieve with step, the more steps it
is going to take. (Recall from Fig. 1 that [G] � [G′] is equivalent to saying
that whenever G holds, so does G′.)

Lemma 1. (∆ is anti-monotonic on the first argument)

∀G,G′, step • [G] � [G′] ⇒ ∆(G′, step) � ∆(G, step) .

Next, we know that if G is already satisfied then no more steps are re-
quired.

Lemma 2. (∆(G, step) is zero at G)

∀G, step • [G] × ∆(G, step) ≡ 0 .

Our final property follows directly from Def. 3 and the least fixed point
property of monotone functions: to verify that X is an upper bound for
∆(G, step), it is only necessary to verify that X satisfies the least fixed
point equation for ∆(G, step) — this makes it possible to reduce reasoning
about upper bounds on expected times to reasoning about expectations. We
call such X’s weak invariants.

Theorem 3. (Invariance)

∀G, step,X • [¬G] × awp.step.(1 + X) � X ⇒ ∆(G, step) � X .

3.1 Automating the ∆ analysis

To facilitate the mechanised proofs of running times, we implemented in
HOL the delta verification-condition generator which uses Thm. 3, the awp
semantics in Fig. 2, and a set of derived rules based on the healthiness condi-
tions to generate the sufficient conditions for the correctness of goals of this
form: ∆(G, step) � X. The tool uses a Prolog interpreter which applies the
rules automatically to remove awp in goals of the form awp.r.A � A′, thus
proofs are reduced to proving arithmetic inequalities between expectations.
The generated conditions are then simplified as much as possible using the
general HOL simplifier and tools for numerical calculations on positive re-
als [13]; any goal that cannot be proved automatically is returned to the
user to be proved interactively.
13 Equivalently we say that if the program do ¬G → step od does not terminate with
probability 1 then ∆(G, step) is ∞; conversely if ∆(G, step) < ∞ then the loop terminates
with probability 1.
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4. Examples: Bounded and unbounded random walks

In this section we consider the expected performance of three different ran-
dom walks. In each case we supply a weak invariant to verify the expected
time to achieve the stated goal. We show later how random walks such as
these often underlie the expected performance of much more complicated
protocols.

Example 1: Finite bounded walk with absorbing barriers

Perhaps the simplest random walk is the symmetric bounded random walk
with absorbing barriers. A particle can move on a bounded interval of the
real line, moving one step to the left or right, with probability 1/2. We
wish to analyse the expected time until the particle can escape its bounds
(equivalently be “absorbed” by either one of its barriers).

We model this in pGCL using an integer-valued variable n which indicates
the position of the particle on the real line. We take as its left-hand bound
the position n = 0 and its right hand bound n = N for some non-negative
integer N , giving us the system

(0 < n < N) → n := n−1 1/2⊕ n := n+1 , (5)

in respect of which we seek an upper bound for ∆(G1, step1). Here we write
step1 for n := n−11/2⊕n := n+1, and ¬G1 for the predicate (0 < n < N).

According to Thm. 3, to verify an upper bound we must supply a weak
invariant for the function 14

(λX • [0 < n < N ]×(1+awp.step1.X)) . (6)

As with standard program invariants, this often requires an insight. Writ-
ing k (also) for the state in which n takes value k, we observe the following
properties of ∆(G1, step1).
(1) If G1 is already satisfied then no more steps are necessary (Lem. 2):

∆(G1, step1).0 = ∆(G1, step1).N = 0;

(2) The walk is symmetrical about N/2, thus so must ∆(G1, step1) be:
∆(G1, step1).k = ∆(G, step1).(N−k) for any 0 ≤ k ≤ N .

One function that satisfies these conditions is the quadratic function 15

[0 < n < N ] × n × (N − n) ,

thus we conjecture that this is a weak invariant for (6). To verify it we
reason as follows.
14 If r is a loop-free pGCL program then awp.r.(1 + X) ≡ 1 + awp.r.X.
15 Note that a lesser symmetric linear function does not satisfy weak invariance.
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[0 < n < N ]×(1+awp.step1.([0 < n < N ]×n×(N−n)))

≡ [0 < n < N ]× Apply “awp”
(1+(n+1)×(N−n−1)/2 + (n−1)×(N−n+1)/2)

≡ [0 < n < N ]×n×(N−n) , Arithmetic

as required. Now appealing to Thm. 3 gives us that indeed ∆(G1, step1) �
[0 < n < N ] × n × (N − n). Thus if N = 30, and the particle is initially at
position 15, then it must take 15(30 − 15) = 225 steps on average to escape
the bounded interval.

A simple variation of this random walk is the “stumble” — this is when a
particle can move up or down with probability p, or remain in position with
probability 1−2p, viz. it is represented by the system

(0 < n < N) → n := n−1 @p | skip @(1−2p) | n := n+1 @p .

(Here we must have that 0 < p ≤ 1/2.) To compute the expected time, we
observe that the paths taken by the stumbler are the same as for the walker
above, it just takes longer to step off the current position — on average
1/(1−2p) longer. This means it must also take the stumbler 1/(1−2p) times
longer to get anywhere at all, thus we must scale the above upper bound for
the simple random walk by this factor. With that insight we can verify as
above that the stumbler takes n×(N−n)/(1−2p) on average to escape the
bounded part of the line.

Example 2: An unbounded random walk

Consider again a particle moving between two boundaries as in Example 1.
We generalise this system by allowing the boundaries to move as well. As
before let n record the position of the particle on the real line; but this time
let l and r respectively be variables recording the current positions of the left
and right boundaries. Each of n, l and r can, with probability 1/2, remain
in position, or with probability 1/2 move up one position, although each one
elects to do so independently of the others. The aim is for the particle to
“collide” with one of the two boundaries. The situation is summed up by
the following system:

(l < n < r) → skip 1/2⊕ n := n + 1;
skip 1/2⊕ l := l + 1;
skip 1/2⊕ r := r + 1

where we write step2 for the program fragment to the right of the guard, and
¬G2 for the guard. Note that since the particle’s distance between its right
and left boundaries can become arbitrarily large (though with vanishing
probability!) this is a type of infinite random walk.



15

To solve this problem, we again need an insight. First we notice that
relative to either boundary the particle is exhibiting a “stumbling” walk
mentioned as a variation to Example 1. To see that, observe that the dis-
tance between the particle and its left boundary is (n−l), and that on each
step this distance can either increase, decrease or remain the same with
probabilities respectively 1/4, 1/4 or 1/2. We observe the same behaviour
with respect to the particle’s distance from its right boundary. Next we
note that the formula verified for Example 1 is in fact the product of the
particle’s distances from its two boundaries. Thus we guess optimistically
that the product of distances will work here too, though possibly scaled by
some constant M to account for the stumbling behaviour. To calculate an
appropriate value for M , we compute

awp.step2.(M(n−l)×(r−n)) ≡ M(n−l) × (r−n)−M/4 .

The condition for weak invariance of M(n−l)×(r−n) with respect to the
least fixed point equation for ∆(G2, step2) is that RHS+1 � M(n−l)×(r−n)
whenever (l < n < r) holds. Solving this inequation for M gives us that
M = 4, and thus we have that 4(n−l)×(r−n) is a suitable weak invariant,
which is easily verified:

1 + awp.step2.([l < n < r] × 4(n−l) × (r−n)) � 4(n−l) × (r−n) .

We can now deduce from Thm. 3 that ∆(G2, step2) � [l < n < r]×4(n−l)×
(r−n). Thus if initially l, n, r := 0, 3, 5 then it takes on average 4×3×2 = 24
steps for the particle to collide with one of its boundaries.

A by-product of this analysis is that the probability that the collision
occurs at all is 1. (Recall the comment after Def. 3, and that this system
operates over an infinite state space.)

Example 3: A bounded random walk in two dimensions

For our final example we take the problem whose solution first appeared in
Mathematical Monthly [12], where it was described as follows.

Three men play the old coin-matching game “odd man wins”.
Play proceeds in a series of rounds: in a round, each player flips
one of his (fair) coins. The player whose outcome differs from
both the others wins that round, and he collects a coin from each
of the two losers. As usual, in the case of a tie, they just flip
again. If the stakes of the players consist of x, y and z coins,
what is the average (or expected) number of rounds before one of
them goes broke?

We model their game in pGCL as the following system.

(x > 0 ∧ y > 0 ∧ z > 0) → skip @1/4
(x := x + 2; y := y − 1; z := z − 1) @1/4
(y := y + 2; z := z − 1;x := x − 1) @1/4
(z := x + 2;x := x − 1; y := y − 1) @1/4
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The first outcome is the result of a draw, and the other three correspond
to how the distribution of coins changes depending on which of the three
players wins.

Our aim is to find an upper bound to ∆(G3, step3), where as before step3

represents the program to the right of the guard and ¬G3 the guard itself.
We begin by noting some properties of this game.
(1) Money is neither created nor destroyed, thus the total x+y+z remains

constant throughout the game;

(2) The relative motion of players’ stakes is coupled, just as the particle’s
relative motion with respect to its two boundaries is in Example 2;

(3) Because of the possibilities of a tie, there is some “stumbling” behaviour
similar to that of the stumbler described in Example 1.

From the second observation, we guess that a weak invariant will be pro-
portional to the product of the players’ stakes; from the third observation
we also guess that the weak invariant we seek will be multiplied by some
constant to account for the stumbling behaviour. Thus the weak invariant
we seek is of the form M(x×y×z) for some constant value M . To calculate
M , we compute:

awp.step3.M(x × y × z) ≡ M(x × y × z) − M(x + y + z)3/4 .

The condition for weak invariance is, as above, that RHS+1 � M(x×y×z),
an inequation which we can solve for M , giving M = 4/(3(x + y + z)).
However, M was assumed to be constant in this calculation, and luckily the
first observation implies that it is. Thus we deduce that 4/3(x×y× z)/(x+
y + z) (for non-negative x, y and z) is the upper bound we seek, a fact we
can verify directly as above.

In this section we saw how the basic properties of ∆ can be applied to
verify upper bounds on various kinds of random walks. In the next section
we show how this approach is also effective more generally.

5. Data abstraction and refinement

In distributed protocols, randomisation is often employed as a “symmetry
breaker” for avoiding potential deadlocks. This introduced randomisation
in turn induces patterns of random state changes which, if looked at in the
right way, are often consistent with the patterns observed in some varieties of
random walks. It is thus those underlying random walks which determine the
expected running time of the original protocol. In this section we provide the
formal theory and some associated proof rules for revealing such underlying
behaviour; the methods we use are based on the well known technique of
data refinement, a variant of program refinement that allows programs to
be compared even when they operate over different state spaces.
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In summary the method we are proposing can be stated as follows. Given
a randomised protocol, we first show that it is anti-data-refined by an “ab-
stract” program which performs a random walk. We then analyse the ab-
stract walking program directly, using the techniques of Sec. 3, finally ap-
pealing to an extended version of Cor. 1 to show that the upper bound
for the abstract walk dominates the expected running time of the original
protocol.

There are several benefits to this staged approach. The first is that the
anti-refined walking program is much simpler algorithmically than the orig-
inal protocol, which makes the ∆-analysis much easier to do. Secondly,
one of the effects of refinement is to “collapse” probabilistic branches when
different probabilistic choices correspond to the same “movement” in the
abstract random walk. This collapsing stage requires appeal to a number of
arithmetic (in)equalities, whose incorporation in a mechanised proof can be
quite challenging. By localising the site where the arithmetic applies — at
a refinement step instead of within the ∆-analysis — much of the work can
be carried out automatically, improving the overall efficiency of the mech-
anised proof. Perhaps most important of all is that the ∆-analysis can be
reused for different protocols: as the same variety of random walk underlies
many different protocols, one imagines that a library of pre-analysed random
walks would be available to the verifier, who then would need only to select
the appropriate walk with which to establish the refinement, looking-up the
∆-analysis already provided.

Our task for this section is to address the data-refinement stage — we
consider how to demonstrate rigorously that two systems operating over
different state spaces correspond so that their respective running times can
be compared. The idea is very simple: borrowing from the standard theory
of data refinement [3, 20], we use an “abstraction invariant” rep (itself a
program in pGCL), which converts variables used by one system into those
used by another in such a way that the respective (probabilistic) transitions
correspond. Formally, we say that the two systems ¬G → step and ¬G′ →
step′ are related by abstraction invariant rep if

¬G � awp.rep.¬G′ , and (7)
rep; step′  step; rep . (8)

Condition (7) says that if the unprimed system requires another step (to
establish G), then so does the primed system (to establish G′). Condition
(8) says that the transitions in step correspond to those of step′, though
step′ might be more nondeterministic. Overall we can prove that if both
conditions hold together then ∆(G′, step′) dominates ∆(G, step).

In assessing the utility of this observation, we recall that the definition
of program refinement Def. 2 includes a quantification over all expectations
(and there are infinitely many of them), thus using Def. 2 directly to verify
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condition (8) is clearly infeasible.16 We propose two solutions to this prob-
lem, dealt with separately below. The first (given at Thm. 4) is generally
applicable, whereas the second (given at Thm. 5) can only be used for a
restricted class of systems.

For the first solution we use the fact that (8) is too strong for our appli-
cation — it is not necessary that the transitions correspond in all contexts,
but only that they correspond within the context of the ∆-analysis. This
means that it is sufficient to check that the inequality dwp.(rep; step′).X �
dwp.(step; rep).X holds only when X is (an upper bound of) ∆(G′, step′).
In Thm. 4 condition (8) has thus been weakened to the condition labelled
by (†), where we see it expressed in the equivalent awp-form.

Theorem 4. (∆ data refinement) Let ¬G → step and ¬G′ → step′ be
two systems. Let rep be a pGCL program. If

[¬G]×awp.(step; rep).(1+∆(G′, step′)) � †
[¬G]×awp.(rep; step′).(1+∆(G′, step′)) ,

and [¬G] � awp.rep.[¬G′] ,
and (∀A,A′ • awp.rep.(A × A′) = awp.rep.A × awp.rep.A′) ,

then ∆(G, step) � awp.rep.∆(G′, step′) .

Proof: The proof uses the assumptions to show that awp.rep.∆(G′, step′)
is a weak invariant with respect to the least fixed point function for ∆(G, step);
the result then follows on appeal to Thm. 3.

Given a system G → step, a verifier can use Thm. 4 if he supplies two
things: an abstract system ¬G′ → step′, and a pGCL program rep which
effectively computes the primed state from the unprimed state. The con-
ditions can be established with the help of the ∆-condition generator and
similar rewriting tools. However, for all but trivial examples, interactive
proof is required in order to discharge the verification conditions — the gen-
eral HOL simplifier is not powerful enough to handle the arithmetic needed
to prove the conditions.

We illustrate Thm. 4 by the systems set out in Fig. 4: two coins are
tossed repeatedly until they show different sides. Although there are four
possible states corresponding to the pair of variables x and y, it is clear
that the running time depends only on a single bit of data, namely whether
the coins are showing the same or different sides. This simpler random
walk is described by the 2-state-walker, whose performance is given by the
16 We recall though that the definition of standard program refinement for standard pro-
grams also uses a quantification over all predicates, yet sound rules for verifying data
refinement have been implemented in the B toolkit [1] for instance that use only first
order predicate calculus. The reason is that conjunctivity — one of Dijkstra’s original
healthiness conditions — justifies elimination of the universal quantification over predi-
cates. Unfortunately, expectation transformers are not conjunctive [21] and we must solve
the problem in some other way.
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expectation 2[n = 1] (recall the comment after Def. 3). By Thm. 4 the
running time of 2-coins is just as simple, and is given by 2[x = y], where the
rep we use as justification is n := [x = y]. The conditions for Thm. 4 are
routinely discharged in this case.

2-coins =̂ (x = y) → 2-state-walker =̂ (n = 1) →
x := head 1/2⊕ x := tail; n := n − 1 1/2⊕ skip
y := head 1/2⊕ y := tail

The abstraction invariant is n := [x = y]. The running time for the 2-state-walker
is given by 2[n = 1], thus by Thm. 4 the running time for the 2-coins is dominated
by awp.(n := [x = y]).2[n = 1] ≡ 2[x = y].

Fig. 4: Abstracting a two-coin-tossing program.

The trouble with Thm. 4 is that it still combines the verification condition
involving both ∆(G′, step′) and step. This means that if step (and there-
fore rep) or ∆(G′, step′) are necessarily complicated then the verification of
condition (†) in Thm. 4 can still be very challenging. Our aim for the re-
mainder of this section is to reduce (†) into conditions which do not involve
both ∆(G′, step′) and step together. This leads us again to consider the
feasibility of verifying the full refinement at (8), and to our second solution
of this section, to which we now turn.

To get a feel for the problem of deciding valid program refinements, we
consider what we would need to do to prove that x := 0 2/3⊕ x := 1  Q
for some arbitrary program Q. If the refinement is valid then intuitively we
would expect Q to execute the probabilistic assignment to x, so at the very
least we would have to perform two checks, namely that overall Q sets x to
0 with probability 2/3 and to 1 with probability 1/3.17 It turns out that for
this particular refinement that is all we would need to check — we say that
x := 0 2/3⊕ x := 1 is determined by predicates, whose full definition is set
out next.

Definition 4. (Determined by predicates) A program Prog is said to
be determined by predicates if, given an arbitrary program Q we have

Prog  Q iff dwp.Prog.[preds
i ].s ≤ dwp.Q.[preds

i ].s , for all i and s ,

where for each initial state s, the collection preds
i , 1 ≤ i ≤ ms forms a finite

set of predicates (depending on s and Prog, but not on Q). We call them
the determining predicates.

The importance of the class of programs characterised by Def. 4 is a con-
sequence of the fact that the set of determining postconditions depends only
17 Unfortunately, there seems to be no way to reduce this number of checks.
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on Prog (and not on the arbitrary Q); if there is only a small number of such
predicates then the task of proving program refinement is again first-order,
and the universal quantification in Def. 2 is not necessary.

We note first that standard programs are determined by predicates (see
for example the normal form construction for predicate transformers [4]).
Next we can extend the class of programs that are determined by predicates
by introducing probabilistic choice in a restricted way.

Lemma 3. (Probabilistic specification programs) pGCL programs of
the form

P1 @p1 | P2 @p2 | . . . | Pn @pn ,

are determined by predicates, where P1, . . . , Pn are standard (probabilistic-
choice-free).18

Proof: See the appendix.

In general, the set of determining predicates might be quite difficult to find,
but in practice for probabilistic choices over nondeterministic assignments
they can be constructed quite easily. For instance, in the generalised abstract
random-walk step

walk =̂ if (n < N) then
n :∈ {n+1, . . . , n+k} @p

| n :∈ {n−k′, . . . , n−1} @q
| skip @(1−p−q)

else n := n−1 q⊕ skip ,

which specifies that when n is strictly less than N , the walker might step
up (with step size at least 1 and at most k) with probability p, or step down
(with step size at least 1 and at most k′) with probability q; the remaining
possibility is to stumble. Here the determining predicates are just related
to the size of the step, namely (n0 < n ≤ n0 + k), (n0 − k′ ≤ n < n0) and
(n = n0), where we use the convention that n0 represents the initial state
of n. Thus we can formulate rules for proving general program refinements
of the form walk  Q using a small number of checks (in this case four 19).
The following lemma sets out a typical example.

Lemma 4. (Walk-tailored simplification for data refinement)Let
walk′ be the program above with k, k′ =̂ 1, 1. Furthermore let ¬G → step be
some system, where step is an arbitrary (loop-free) pGCL program. Define
the predicates n+ =̂ [n = n0 + 1], n− =̂ [n = n0 − 1] and e =̂ [n = n0]. If
rep is a pGCL program satisfying the following conditions

[¬G] × dwp.(rep;walk′).n+ � [¬G] × dwp.(step; rep).n+ ,

and [¬G] × dwp.(rep;walk′).n− � [¬G] × dwp.(step; rep).n− ,

and [¬G] × dwp.(rep;walk′).e � [¬G] × dwp.(step; rep).e ,

18 Recall from Sec. 2 that standard programs include ordinary conditional choice.
19 We need one condition for each determining predicate and one condition involving their
union. The latter is related to the presence of nondeterminism in the walk.
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then ∀X • [¬G] × dwp.(rep;walk′).X � [¬G] × dwp.(step; rep).X.
Proof: The proof uses a construction similar to that given in the appendix
to express an arbitrary expectation in terms of the determining predicates.
The general refinement follows from the healthiness conditions of the dwp
semantics.

Note that in rules such as Lem. 4 the expectations on the left of the
inequality are simple functions of p and q — for instance dwp.(rep;walk).n+

evaluated at n0 is p× n0. Moreover experience shows that the proofs of the
conditions are very similar to each other, so any difficulty in using such rules
is more apparent than real. Finally combining Lem. 4 and Thm. 4 we have
the following general proof rule, representing the two stages, for analysing
expected running times.

Theorem 5. (An underlying simple random walk) Let ¬G → step
and (0 < n ≤ N) → walk′ be systems where walk′ is defined in Lem. 4, and
step is loop-free. If rep satisfies the antecedents of Thm. 4 with the condition
(†) replaced by the antecedents of Lem. 4, then 20

∆(G, step) � awp.rep.∆(n = 0,walk′) .

To illustrate Thm. 5 we consider again the programs in Fig. 4. First we note
that 2-state-walker is in fact a special case of program walk with N = 1 and
p = q = 1/2. Now to apply the theorem we see that n+ =̂ 0, n− =̂ [n = 1]
and e =̂ [n = 0]. Thus we must show that both dwp.(2-coins;n := (x =
y)).[n = 0] and dwp.(2-coins;n := (x = y)).[n = 1] are at least 1/2, facts
which follow immediately. Again we can deduce that ∆(2-coins) is bounded
above by 2[x = y].

Overall theorems like Thm. 5 can be formulated for any appropriate ran-
dom walk, although proving them mechanically can be quite tricky. How-
ever, once proved they “pay for themselves” for complicated protocols, since
the conditions are easier to verify than those in Thm. 4. Our experiments
have shown that using Thm. 5 can decrease the effort for the mechanical
proof by about a factor of 2.21

Finally we note that since Lem. 3 represents a first-order formulation for
probabilistic refinement, we expect it to be of general interest. We are not
aware of any other such first-order refinement rule for probabilistic programs.
20 When p = q, the expected time ∆(n = 0, walk′) is exactly N(N + 1)/4q2 for n = N
initially.
21 We analysed a variation on Herman’s ring described in [19] using both approaches.
Using a theorem similar to Thm. 5 significantly reduced the amount of arithmetic needed
in the proofs.



22

6. Example: Herman’s ring

In this example we analyse Herman’s probabilistic self-stabilisation [11], a
distributed algorithm that can be used for leadership election in a ring of
synchronous processors.

A single token is to circulate at all times in a ring of N identical processors;
if more than one token is circulating in the ring, the following algorithm is
applied to return the state of the ring to that of a single circulating token.
On each step, each token-holding processor, synchronously with the others,
flips a coin to decide whether to keep its token or pass it clockwise to the next
processor. If two tokens collide — a token-holding processor receives a token
from the next-anticlockwise processor — the tokens are annihilated. The
process continues until only one processor holds a token. For the protocol
to succeed, the number of processors initially holding tokens must be odd
since the tokens are removed from the ring two at a time.

In our analysis we will assume that the initial configuration of the ring is
such that only three tokens are being passed around in the ring (see Fig. 5).
Eventually two of the tokens collide, that is one of the distances xy, yz, or

Herman-ring =̂ x �= y �= z →
skip 1/2⊕ x := (x + 1) mod N ;

skip 1/2⊕ y := (y + 1) mod N ;

skip 1/2⊕ z := (z + 1) mod N 1/2

1/21/2

y
x

1/2 1/2

1/2

z

The ring has N processors. x, y, and z represent the processors holding tokens.
The algorithm terminates when two of the tokens collide.

Fig. 5: A program for Herman’s ring with three tokens.

zx becomes 0. In fact, the behaviour of these distances is all that matters
when calculating the running times; hence, we proceed by analysing the
random walk that the distances perform themselves. We then prove that
this random walk is a correct abstraction of the ring program with respect
to running times.

As the processes decide whether to keep or pass the tokens, the distances
xy, yz, and zx increase, decrease, or remain unchanged with some proba-
bility. For example, xy increases with probability 1/4 if x keeps the token
and y passes it; decreases with probability 1/4 if x passes the token and y
keeps it; and remains unchanged with probability 1/2 if both x and y keep
the tokens or both pass them. The behaviour of yz, and zx is analysed in a
similar fashion. The resulting random walk is described in Fig. 6.
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Herman-walk =̂ 0 < xy ∧ 0 < yz ∧ 0 < zx →
skip @1/4
| xy := xy − 1; yz := yz + 1 @1/8
| xy := xy + 1; yz := yz − 1 @1/8
| yz := yz − 1; zx := zx + 1 @1/8
| yz := yz + 1; zx := zx − 1 @1/8
| zx := zx − 1; xy := xy + 1 @1/8
| zx := zx + 1; xy := xy − 1 @1/8

Fig. 6: An abstracted random walk for Herman’s ring with three tokens, containing
distance variables.

We prove that 4(xy × yz × zx)/(xy + yz + zx) is a weak invariant for this
walk.

Next we provide an abstraction invariant for the data refinement:

Herman-rep =̂ xy := distance(x, y,N);
yz := distance(y, z,N);
zx := distance(z, x,N)

where distance is defined to take into consideration the ring structure; for
example, one can prove that the three distances sum to N . We apply Thm. 4
and Thm. 3, and discharge the verification conditions interactively to finally
get the bound for the ring program:

awp.Herman-rep.(4(xy × yz × zx)/N) . (9)

This formula expresses the upper bound on the ring’s average running time
as a function of the initial distances between the processors holding tokens
and the number of processors. It can be easily seen that the more evenly-
distributed the tokens are initially, the more time will be needed for the
leader to be elected.

Finally, we compare our results on the worst average stabilising time with
those verified using the PRISM model checker, which has also been used to
analyse this protocol [14, 23]. Tab. I summarises these results. The PRISM
verification has been carried out for rings with up to 17 processors. The
HOL results are calculated by instantiating the bound we proved (9) so that
the tokens are distributed as evenly as possible.

Perhaps the most interesting observation is that although the PRISM
results in Tab. I are given as a worst case analysis (that is, over all possible
initial configurations of odd coins), the expected running time is no larger
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N PRISM result HOL result
3 1.333333 1.333333
5 3.199998 3.2
7 6.857138 6.857142
9 11.999993 12
11 17.454534 17.454545
13 24.615369 24.615384
15 33.333312 33.333333
17 42.352913 42.352941
19 - 53.052632
... - 4(�N/3�×�(N+1)/3�×�(N+2)/3�)

N

�a� denotes the floor of a number a.

Table I: PRISM and HOL bounds on the maximum expected time for ring stabilisation.

than the maximum expected running time for the case when only three
processors start with tokens. Thus the case of three initial tokens seems to
deliver the worst possible result for 3 ≤ N ≤ 17. It is unknown whether the
three-token case is the worst possible for all N [16].

7. Related work and conclusions

Segala et al. [24] have considered techniques for estimating expected running
times within I/O automata, and de Alfaro [6] has formulated “expected
rewards” in systems where the reward varies depending on the state from
which a computation is made. Our technique based on probabilistic data
refinement however addresses the problem of improving the efficiency of the
analysis; moreover, data refinement means that previously analysed random
walks may be reused.

Removing the loop-free condition in step remains a topic for further in-
vestigation, and indeed our current definition of ∆ is not general enough
to treat this. To account for nested loops, a general operator for expected
termination would need to allow the possibility of varying rewards, so that
applied to a loop of the form

do G → (do G′ → step′ od); step od

each iteration of the outer loop would account for the expected termination
time for the inner loop.

Another interesting line of research would be to investigate how to find
weak invariants for the ∆-analysis; work along these lines has been done by
Ernst et al. [8] for generating standard program invariants, and it would
be interesting to see whether similar techniques would apply to quantitative
invariants.
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Appendix A. Proof of Lem. 3

Programs in pGCL of the form

P =̂ P1 @p1 | P2 @p2 | . . . | Pn @pn , (10)

are determined by predicates, where P1, . . . , Pn are standard (probabilistic-
choice free), terminating programs.

To prove this result, we must show that given a pGCL program P ,

P  Q iff dwp.P.[postsi ].s ≤ dwp.Q.[postsi ].s , 1 ≤ i ≤ ms , (11)

where for each s, postsi (1 ≤ i ≤ ms) is a finite set of predicates (depending
on s and P , but not Q).

To avoid clutter, we fix initial state s and drop the s super- and subscripts
— thus for instance we write dwp.r.E = E′ instead of dwp.r.(Es).s = E′.s
We also define

B ⊆ C =̂ (∀s • B.s ⇒ Q.s) .

for predicates B and C, and we identify a predicate with the subset of states
for which it is true.

We prove (11) by constructing the determining predicates for P (and fixed
initial state s). The detailed reasoning is set out in the steps below together
with either a proof, or a citation in the cases where proofs occur elsewhere.
(1) For any standard (probabilistic-choice free), terminating program Prog

there is an associated predicate pred such that dwp.Prog.[post] = [pred ⊆
post], for any predicate post. (Back and von Wright [4] for the selection
of pred, and Morgan and McIver [15] for the embedding of predicate
transformers into expectation transformers.)

(2) For standard program Prog and expectation E, dwp.Prog.E = e×[pred],
where pred is Prog’s associated determining predicate from (step 1) and
e is the largest scalar such that e × [pred] � E. (McIver and Morgan
[15].)
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(3) To prove the refinement at equation (11), we may assume that the
expectation E in Def. 2 has finite range, i.e. that the set {E.s | s : S}
is finite. This follows from continuity of dwp.P . (McIver and Morgan
[15].)

(4) Now let P be the program defined at equation (10). Let pred1, pred2,
. . . , predk be the associated predicates given at (step 1), respectively
for the programs P1, P2, . . . , Pk. The following equality holds for any
predicate B:

dwp.P.[B] = dwp.P.[ ∨
predi⊆B

predi] ,

where ∨predi⊆B predi denotes the disjunction over all 1 ≤ i ≤ n such
that predi ⊆ B.
Proof: We reason as follows:

dwp.P.[B]
= dwp.(P1 @p1 | P2 @p2 | . . . | Pn @pn).[B]
=

∑
1≤i≤n pi × dwp.Pi.[B] Definition “@pi”, Fig. 2

=
∑

1≤i≤n pi × [predi ⊆ B] (step 1) above
=

∑
1≤i≤n pi × [predi ⊆ ∨predj⊆B predj ] Predicate calculus

= dwp.P.[∨predi⊆B predi] . Definition “@pi”, Fig. 2

We continue now to show that the set of determining predicates for P
(at fixed initial state s) is {∨i : I predi | I ⊆ {1, . . . , n}}.

(5) Given an expectation E, by (step 3) we may assume that it takes
distinct values e1 < e2 < · · · < ek. We construct a set of predicates as
follows. For each 1 ≤ i ≤ k,

Bi =̂ {s : S | E.s ≥ ei} .

We note that B1 ⊇ B2 ⊇ · · · ⊇ Bk, and that ei × [Bi] � E.
(6) Using the definitions from (step 5), we define

E′ =̂ e1 × [B1] + (e2 − e1) × [B2] + · · · + (ek − ek−1) × [Bk] ,

and note that by construction E′ ≡ E. We define non-negative scalars
e′1 =̂ e1, and e′i =̂ (ei − ei−1) for 2 ≤ i ≤ k.

(7) For any standard program Prog, we have that

dwp.Prog.E =
∑

1≤i≤k

e′i × dwp.Prog.[Bi] .

Proof: We show first that the RHS ≥ LHS — we assume that LHS >
0, otherwise the result is trivial. Observe first from (step 2) that
dwp.Prog.E = ej for some j where ej × [pred] � E, and pred is P ’s
determining predicate. We see now from the construction in (step 5)
that pred ⊆ Bj , from which it follows that
∑

1≤i≤k

e′i × dwp.Prog.[Bi] =
∑

1≤i≤k

e′i × [pred ⊆ Bi] ≥ ej = dwp.Prog.E ,
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where the first equality follows from (step 1) and the nesting of the
Bi’s from (step 5) and the definition of the e′i.
To show that LHS ≥ RHS, we simply observe that

∑
e′i×dwp.Prog.[Bi]

≤ dwp.Prog.(
∑

e′i× [Bi]) = dwp.Prog.E, which follows from sub-additi-
vity of dwp.Prog (Morgan et al. [21]) and then (step 6) above, conclud-
ing the proof.

(8) Now let Q be a pGCL program such that

dwp.P.[( ∨
i : I

predi)] ≤ dwp.Q.[( ∨
i : I

predi)] ,

for all subsets I of {1, . . . , n}. We show in that case that P  Q.
Proof: We reason as follows. Let E be an expectation with finite
range.

dwp.P.E
=

∑
1≤i≤n pi×dwp.Pi.E Definition “@pi”, Fig. 2

=
∑

1≤i≤n pi×(
∑

1≤j≤k e′j×dwp.Pi.[Bj ]) (step 7); Pi is standard
=

∑
1≤j≤k e′j×(

∑
1≤i≤n pi×dwp.Pi.[Bj ]) Arithmetic

=
∑

1≤j≤k e′j×dwp.P.[Bj ] Definition “@pi”, Fig. 2
=

∑
1≤j≤k e′j×(dwp.P.[∨predi⊆Bj

predi]) (step 4); Bj is a pred.
≤ ∑

1≤j≤k e′j×(dwp.Q.[∨predi⊆Bj
predi]) Assumption

≤ dwp.Q.(
∑

1≤j≤k e′j×[Bj ]) dwp.Q is sub-additive, [21]
= dwp.Q.E , (step 6)

as required. Lem. 3 now follows from Def. 2 and (step 3), since E was
chosen arbitrarily.


