
Annabelle McIver
Carroll Morgan

Abstraction,
Refinement
and Proof

for
Probabilistic Systems

With 62 Figures

Springer

Annabelle McIver
Department of Computing
Macquarie University
Sydney 2109 Australia
anabel@ics.mq.edu.au

Carroll Morgan
Department of Computer Science

and Engineering
The University of New South Wales
Sydney 2052 Australia
carrollm@cse.unsw.edu.au

Preface

Probabilistic techniques in computer programs and systems are becom-
ing more and more widely used, for increased efficiency (as in random
algorithms), for symmetry breaking (distributed systems) or as an unavoid-
able artefact of applications (modelling fault-tolerance). Because interest
in them has been growing so strongly, stimulated by their many potential
uses, there has been a corresponding increase in the study of their correct-
ness — for the more widespread they become, the more we will depend on
understanding their behaviour, and their limits, exactly.

In this volume we address that last concern, of understanding: we present
a method for rigorous reasoning about probabilistic programs and systems.
It provides an operational model — “how they work” — and an associated
program logic — “how we should reason about them” — that are designed
to fit together. The technique is simple in principle, and we hope that with
it we will be able to increase dramatically the effectiveness of our analysis
and use of probabilistic techniques in practice.

Our contribution is a probabilistic calculus that operates at the level of
the program text, and it is light-weight in the sense that the amount of
reasoning is similar in size and style to what standard
assertional techniques require. In the fragment at right,
for example, each potential loop entry occurs with prob-
ability 1/2; the resulting iteration establishes x ≥ 1/2
with probability exactly p for any 0 ≤ p ≤ 1. It is thus
an implementation of the general operation choose with
probability p, but it uses only simple tests of unbiased
random bits (to implement the loop guard). It should take only a little
quantitative logic to confirm that claim, and indeed we will show that just
four lines of reasoning suffice.

x: = p ;
while 1/2 do

x: = 2x;
if x ≥ 1

then x: = x − 1
fi

od

Economy and precision of reasoning are what we have come to expect
for standard programs; there is no reason we should accept less when they
are probabilistic.

The cover illustration comes from page 59.
The program fragment is adapted from Fig. 7.7.10 on page 210.

vi Preface

Scope and applicability

Methods for the analysis of probabilistic systems include automata, labelled
transition systems, model checking and logic (e.g. dynamic or temporal).
Our work falls into the last category: we overlay the Hoare-logic paradigm
with probabilistic features imported from Markov processes, taking from
each the essential characteristics required for a sound mathematical theory
of refinement and proof. The aim is to accommodate modelling and analysis
of both sequential and distributed probabilistic systems, and to allow —
even encourage — movement between different levels of abstraction.

Our decision to focus on logic — and a proof system for it — was moti-
vated by our experience with logical techniques more generally: they impose
a discipline and order which promotes clarity in specifications and design;
the resulting proofs can often be carried out, and checked, with astonishing
conciseness and accuracy; and the calculation rules of the logic lead to an
algebra that captures useful equalities and inequalities at the level of the
programs themselves.

Although we rely ultimately on an operational model, we use it prin-
cipally to validate the logic (and that, in turn, justifies the algebra) —
direct reliance on the model’s details for individual programs is avoided if
possible. (However we do not hesitate to use such details to support our
intuition.) We feel that operational reasoning is more suited to the algorith-
mic methods of verification used by model checkers and simulation tools
which can, for specific programs, answer questions that are impractical for
the general approach that a logic provides.

Thus the impact of our approach is most compelling when applied to pro-
grams which are intricate either in their implementation or their design, or
have generic features such as undetermined size or other parameters. They
might appear as probabilistic source-level portions of large sequential pro-
grams, or as abstractions from the probabilistic modules of a comprehensive
system-level design; we provide specific examples of both situations. In the
latter case the ability to abstract modules’ properties has a significant effect
on the overall verification enterprise.

Technical features

Because we generalise the well-established assertional techniques of specifi-
cations, pre- and postconditions, there is a natural continuity of reasoning
style evident in the simultaneous use of the new and the familiar ap-
proaches: the probabilistic analysis can be deployed more, or less, as the
situation warrants.

A major feature is that we place probabilistic choice and abstraction
together, in the same framework, without having to factor either of them
out for separate treatment unless we wish to (as in fact we do in Chap. 11).
This justifies the abstraction and refinement of our title, and is what gives

Preface vii

us access to the stepwise-development paradigm of standard programming
where systems are “refined” from high levels of abstraction towards the low
levels that include implementation detail.

As a side-effect of including abstraction, we retain its operational
counterpart demonic choice as an explicit operator # in the cut-down
probabilistic programming language pGCL which we use to describe our
algorithms — that is, the new probabilistic choice operator p⊕ refines de-
monic choice rather than replacing it. In Chap. 8 we consider angelic choice
% as well, which is thus a further refinement.

Probabilistic and demonic choice together allow an elementary treatment
of the hybrid that selects “with probability at least p” (or similarly “at most
p”), an abstraction which accurately models our unavoidable ignorance of
exact probabilities in real applications. Thus in our mathematical model
we are able to side-step the issue of “approximate refinement.”

That is, rather than saying “this coin refines a fair coin with probability
95%,” we would say “this coin refines one which is within 5% of being
fair.” This continues the simple view that either an implementation refines
a specification or it does not, which simplicity is possible because we have
retained the original treatment in terms of sets of behaviours: abstraction
is inclusion; refinement is reverse inclusion; and demonic choice is union.
In that way we maintain the important relationship between the three
concepts. (Section 6.5 on pp. 169ff illustrates this geometrically.)

Organisation and intended readership

The material is divided into three major parts of increasing specialisation,
each of which can to a large extent be studied on its own; a fourth part
contains appendices. We include a comprehensive index and extensive cross-
referencing.

Definitions of notation and explanations of standard mathematical tech-
niques are carefully given, rather than simply assumed; they appear as
footnotes at their first point of use and are made visually conspicuous by
using small capitals for the defined terms (where grammar allows). Thus
in many cases a glance should be sufficient to determine whether any foot-
note contains a definition. In any case all definitions, whether or not in
footnotes, may be retrieved by name through the index; and those with
numbers are listed in order at page xvii.

Because much of the background material is separated from the main
text, the need for more advanced readers to break out of the narrative
should be reduced. We suggest that on first reading it is better to consult
the footnotes only when there is a term that appears to require definition
— otherwise the many cross-references they contain may prove distracting,
as they are designed for “non-linear” browsing once the main ideas have
already been assimilated.

viii Preface

Part I, Probabilistic guarded commands, gives enough introduction to the
probabilistic logic to prove properties of small programs such as the one
earlier, for example at the level of an undergraduate course for Formal-
Methods-inclined students that explains “what to do” but not necessarily
“why it is correct to do that.” These would be people who need to un-
derstand how to reason about programs (and why), but would see the
techniques as intellectual tools rather than as objects of study in their own
right.

We have included many small examples to serve as models for the ap-
proach (they are indexed under Programs), and there are several larger
case studies (for example in Chap. 3).

Part II, Semantic structures, develops in detail the mathematics on which
the probabilistic logic is built and with which is it justified. That is, whereas
the earlier sections present and illustrate the new reasoning techniques, this
part shows where they have come from, why they have the form they do
and — crucially — why they are correct.

That last point is especially important for students intending to do re-
search in logic and semantics, as it provides a detailed and extended worked
example of the fundamental issue of proving reasoning techniques them-
selves to be correct (more accurately, “valid”), a higher-order concept than
the more familiar theme of the previous part in which we presented the
techniques ex cathedra and used them to verify particular programs.

This part would thus be suitable for an advanced final-year under-
graduate or first-year graduate course, and would fit in well with other
material on programming semantics. It defines and illustrates the use of
many of the standard tools of the subject: lattices, approximation orders,
fixed points, semantic injections and retractions etc.

Part III, Advanced topics, concentrates on more exotic methods of specifi-
cation and design, in this case probabilistic temporal/modal logics. Its final
chapter, for example, contains material only recently discovered and leads
directly into an up-to-date research area. It would be suitable for graduate
students as an introduction to this specialised research community.

Part IV includes appendices collecting material that either leads away
from the main exposition — e.g. alternative approaches and why we have
not taken them — or supports the text at a deeper level, such as some of
the more detailed proofs.

It also contains a short list of algebraic laws that demonic/probabilistic
program fragments satisfy, generated mainly by our needs in the examples
and proofs of earlier sections. An interesting research topic would be a
more systematic elaboration of that list with a view to incorporating it
into probabilistic Kleene- or omega algebras for distributed computations.

Preface ix

Overall, readers seeking an introduction to probabilistic formal methods
could follow the material in order from the beginning. Those with more
experience might instead sample the first chapter from each part, which
would give an indication of the scope and flavour of the approach generally.

Original sources

Much of the material is based on published research, done with our col-
leagues, in conference proceedings and journal articles; but here it has been
substantially updated and rationalised — and we have done our best to
bring the almost ten years’ worth of developing notation into a uniform
state.

For self-contained presentations of the separate topics, and extra
background, readers could consult our earlier publications as shown
overleaf.

At the end of each chapter we survey the way in which our ideas have
been influenced by — and in some cases adopted from — the work of other
researchers, and we indicate some up-to-date developments.

Acknowledgements

Our work on probabilistic models and logic was carried out initially at
the University of Oxford, together with Jeff Sanders and Karen Seidel and
with the support of the UK’s Engineering and Physical Sciences Research
Council (the EPSRC) during two projects led by Sanders and Morgan over
the years 1994–2001.

Morgan spent sabbatical semesters in 1995–6 at the University of
Utrecht, as the guest of S. Doaitse Swierstra, and at the University of
Queensland and the Software Verification and Research Centre (SVRC),
as the guest of David Carrington and Ian Hayes. The foundational work
the EPSRC projects produced during that period — sometimes across great
distances — benefited from the financial support of those institutions but
especially from the academic environment provided by the hosts and by
the other researchers who were receptive to our initial ideas [MMS96].

Ralph Back at Åbo Akademi hosted our group’s visit to Turku for a
week in 1996 during which we were able to explore our common interests
in refinement and abstraction as it applied to the new domain; that led
later to a three-month visit by Elena Troubitsyna from the Turku Center for
Computer Science (TUCS), to our group in Oxford in 1997, and contributed
to what has become Chap. 4 [MMT98].

David Harel was our host for a two-week visit to Israel in 1996, dur-
ing which we presented our ideas and benefited from the interaction with
researchers there.

x Preface

Chapters’ dependence on original sources

Chapter 1 see [MM99b, SMM, MMS00]
Chapter 2 see [Mor96, MMS00]
Chapter 3 see [MM99b]
Chapter 4 see [MMT98]
Chapter 5 see [MMS96]
Chapter 6 is new material
Chapter 7 see [Mor96, MM01b]
Chapter 8 see [MM01a]
Chapter 9 see [MM97]
Chapter 10 see [MM99a]
Chapter 11 see [MM02]

The sources listed opposite are in chronological order of writing, thus
giving roughly the logical evolution of the ideas.

Subsequently we have continued to work with Sanders and with Ken
Robinson, Thai Son Hoang and Zhendong Jin, supported by the Australian
Research Council (ARC) over the (coming) years 2001–8 in their Large
Grant and Discovery programmes, at the Universities of Macquarie and of
New South Wales.

Joe Hurd from the Computer Laboratory at Cambridge University vis-
ited us in 2002, with financial assistance from Macquarie University; and
Orieta Celiku was supported by TUCS when she visited in 2003. Both
worked under McIver’s direction on the formalisation of pGCL, and its
logic, in the mechanised logic HOL.

Hoang, Jin and especially Eric Martin have helped us considerably with
their detailed comments on the typescript; also Ralph Back, Ian Hayes,
Michael Huth, Quentin Miller and Wayne Wheeler have given us good
advice. Section B.1 on the algebraic laws satisfied by probabilistic programs
has been stimulated by the work (and the critical eyes) of Steve Schneider
and his colleagues at Royal Holloway College in the U.K.

We thank the members of IFIP Working Groups 2.1 and 2.3 for their
many comments and suggestions.

Annabelle McIver
Carroll Morgan

LRI Paris,
May 2004

In memoriam AJMvG

Preface xi

List of sources in order of writing

[MMS96] C.C. Morgan, A.K. McIver, and K. Seidel. Proba-
bilistic predicate transformers. ACM Transactions on
Programming Languages and Systems, 18(3):325–53, May
1996.

[Mor96] C.C. Morgan. Proof rules for probabilistic loops. In
He Jifeng, John Cooke, and Peter Wallis, editors, Pro-
ceedings of the BCS-FACS 7th Refinement Workshop,
Workshops in Computing. Springer Verlag, July 1996.

[MM01b] A.K. McIver and C.C. Morgan. Partial correctness for
probabilistic programs. Theoretical Computer Science,
266(1–2):513–41, 2001.

[SMM] K. Seidel, C.C. Morgan, and A.K. McIver. Probabilistic
imperative programming: a rigorous approach. Extended
abstract appears in Groves and Reeves [GR97], pages 1–2.

[MMT98] A.K. McIver, C.C. Morgan, and E. Troubitsyna. The
probabilistic steam boiler: a case study in probabilistic data
refinement. In J. Grundy, M. Schwenke, and T. Vickers,
editors, Proc. International Refinement Workshop, ANU,
Canberra, Discrete Mathematics and Computer Science,
pages 250–65. Springer Verlag, 1998.

[MM01a] A.K. McIver and C.C. Morgan. Demonic, angelic and un-
bounded probabilistic choices in sequential programs. Acta
Informatica, 37:329–54, 2001.

[MM99b] C.C. Morgan and A.K. McIver. pGCL: Formal reasoning
for random algorithms. South African Computer Journal,
22, March 1999.

[MM97] C.C. Morgan and A.K. McIver. A probabilistic tempo-
ral calculus based on expectations. In Groves and Reeves
[GR97], pages 4–22.

[MM99a] C.C. Morgan and A.K. McIver. An expectation-based
model for probabilistic temporal logic. Logic Journal of
the IGPL, 7(6):779–804, 1999.

[MMS00] A.K. McIver, C.C. Morgan, and J.W. Sanders. Probably
Hoare? Hoare probably! In J.W. Davies, A.W. Roscoe, and
J.C.P. Woodcock, editors, Millennial Perspectives in Com-
puter Science, Cornerstones of Computing, pages 271–82.
Palgrave, 2000.

[MM02] A.K McIver and C.C. Morgan. Games, probability and the
quantitative µ-calculus qMu. In Proc. LPAR, volume 2514
of LNAI, pages 292–310. Springer Verlag, 2002.

xii Preface

Contents

Preface v

List of definitions etc. xvii

Part I Probabilistic guarded commands 1

1 Introduction to pGCL 3

1.1 Sequential program logic 4
1.2 The programming language pGCL 7
1.3 An informal computational model for pGCL 11
1.4 Behind the scenes: elementary probability theory 16
1.5 Basic syntax and semantics of pGCL 18
1.6 Healthiness and algebra for pGCL 28
1.7 Healthiness example: modular reasoning 32
1.8 Interaction between probabilistic- and demonic choice . . 34
1.9 Summary . 35

Chapter notes . 36

2 Probabilistic loops: invariants and variants 37

2.1 Introduction: loops via recursion 38
2.2 Probabilistic invariants 39
2.3 Probabilistic termination 40
2.4 Invariance and termination together: the loop rule 42
2.5 Three examples of probabilistic loops 44
2.6 The Zero-One Law for termination 53
2.7 Probabilistic variant arguments for termination 54

xiv Contents

2.8 Termination example: self-stabilisation 56
2.9 Uncertain termination 61
2.10 Proper post-expectations 63
2.11 Bounded vs. unbounded expectations 68
2.12 Informal proof of the loop rule 74

Chapter notes . 77

3 Case studies in termination 79

3.1 Rabin’s choice coordination 79
3.2 The dining philosophers 88
3.3 The general random “jump” 99

Chapter notes . 105

4 Probabilistic data refinement: the steam boiler 107

4.1 Introduction: refinement of datatypes 107
4.2 Data refinement and simulations 108
4.3 Probabilistic datatypes: a worked example 110
4.4 A safety-critical application: the probabilistic steam boiler 117
4.5 Summary . 123

Chapter notes . 124

Part II Semantic structures 127

5 Theory for the demonic model 129
5.1 Deterministic probabilistic programs 130
5.2 The sample space, random variables and expected values 133
5.3 Probabilistic deterministic transformers 135
5.4 Relational demonic semantics 137
5.5 Regular transformers . 141
5.6 Healthiness conditions for probabilistic programs 145
5.7 Characterising regular programs 149
5.8 Complementary and consistent semantics 154
5.9 Review: Semantic structures 157

Chapter notes . 164

6 The geometry of probabilistic programs 165

6.1 Embedding distributions in Euclidean space 166
6.2 Standard deterministic programs 166
6.3 Probabilistic deterministic programs 167
6.4 Demonic programs . 168
6.5 Refinement . 169

Contents xv

6.6 Nontermination and sub-distributions 171
6.7 Post-expectations, touching planes and pre-expectations 172
6.8 Refinement seen geometrically 174
6.9 Geometric interpretations of the healthiness conditions . 175
6.10 Sublinearity corresponds to convexity 176
6.11 Truncated subtraction 177
6.12 A geometrical proof for recursion 177

Chapter notes . 180

7 Proved rules for probabilistic loops 181

7.1 Introduction . 182
7.2 Partial loop correctness 184
7.3 Total loop correctness . 186
7.4 Full proof of the loop rule 189
7.5 Probabilistic variant arguments 191
7.6 Finitary completeness of variants 193
7.7 Do-it-yourself semantics 195
7.8 Summary . 214

Chapter notes . 216

8 The transformer hierarchy 217

8.1 Introduction . 217
8.2 Infinite state spaces . 219
8.3 Deterministic programs 221
8.4 Demonic programs . 224
8.5 Angelic programs . 227
8.6 Standard programs . 231
8.7 Summary . 238

Chapter notes . 242

Part III Advanced topics 243

9 Quantitative temporal logic: an introduction 245

9.1 Modal and temporal logics 245
9.2 Standard temporal logic: a review 247
9.3 Quantitative temporal logic 252
9.4 Temporal operators as games 254
9.5 Summary . 262

Chapter notes . 263

xvi Contents

10 The quantitative algebra of qTL 265

10.1 The role of algebra . 265
10.2 Quantitative temporal expectations 268
10.3 Quantitative temporal algebra 277
10.4 Examples: demonic random walkers and stumblers 283
10.5 Summary . 289

Chapter notes . 291

11 The quantitative modal µ-calculus qMµ, and games 293
11.1 Introduction to the µ-calculus 293
11.2 Quantitative µ-calculus for probability 295
11.3 Logical formulae and transition systems 295
11.4 Two interpretations of qMµ 298
11.5 Example . 301
11.6 Proof of equivalence of interpretations 304
11.7 Summary . 308

Chapter notes . 310

Part IV Appendices, bibliography and indexes 311

A Alternative approaches 313
A.1 Probabilistic Hoare-triples 313
A.2 A programming logic of distributions 316

B Supplementary material 321

B.1 Some algebraic laws of probabilistic programs 321
B.2 Loop rule for demonic iterations 328
B.3 Further facts about probabilistic wp and wlp 331
B.4 Infinite state spaces . 332
B.5 Linear-programming lemmas 341
B.6 Further lemmas for eventually 342

Bibliography 345

Index of citations 357

General index 361

List of definitions etc.

Definitions and notations for standard mathematical concepts are given in
footnotes, rather than in the main text, so that they do not interrupt the
flow. They can be found directly, via the index, where they are indicated
by bold-face page references. Thus for example at “fixed point, least” we
find that the least fixed-point and its associated “µ notation” are defined
in Footnote 33 on p. 21, and a second form of the µ notation is defined in
Footnote 32 on p. 102.

Definition 1.2.1 9
Figure 1.3.1 14
Figure 1.3.2 15
Figure 1.5.1 22
Definition 1.5.2 24
Figure 1.5.3 26
Definition 1.6.1 28
Definition 1.6.2 29
Figure 1.6.3 33
Lemma 1.7.1 33
Definition 2.2.1 39
Lemma 2.4.1 42
Figure 2.5.1 45
Figure 2.5.2 47
Figure 2.5.3 52
Lemma 2.6.1 54
Lemma 2.7.1 55
Figure 2.8.1 57
Figure 2.8.2 58
Figure 2.8.3 59
Figure 2.10.1 65

Lemma 2.10.2 66
Figure 2.11.1 69
Figure 2.11.2 71
Figure 2.11.3 73
Figure 2.11.4 75
Figure 3.1.1 83
Figure 3.2.1 90
Figure 3.2.2 91
Figure 3.2.3 92
Lemma 3.2.4 94
Figure 3.2.5 98
Figure 3.3.1 101
Definition 4.2.1 109
Definition 4.2.2 110
Figure 4.3.1 111
Figure 4.3.2 111
Figure 4.3.3 115
Figure 4.3.4 116
Lemma 4.3.5 117
Figure 4.4.1 118
Figure 4.4.2 119

xviii List of definitions etc.

Figure 4.4.3 120
Figure 4.4.4 121
Figure 4.4.5 122
Lemma 4.4.6 122
Lemma 4.4.7 122
Definition 5.1.1 130
Definition 5.1.2 131
Definition 5.1.3 131
Definition 5.1.4 132
Definition 5.1.5 132
Definition 5.2.1 134
Definition 5.2.2 134
Definition 5.2.3 135
Definition 5.4.1 138
Definition 5.4.2 138
Definition 5.4.3 139
Definition 5.4.4 139
Definition 5.4.5 140
Definition 5.4.6 140
Definition 5.4.7 140
Lemma 5.4.8 141
Figure 5.5.1 143
Definition 5.5.2 144
Definition 5.5.3 145
Definition 5.6.1 146
Lemma 5.6.2 146
Lemma 5.6.3 147
Lemma 5.6.4 147
Lemma 5.6.5 147
Lemma 5.6.6 147
Figure 5.6.7 148
Lemma 5.6.8 148
Definition 5.7.1 149
Lemma 5.7.2 150
Lemma 5.7.3 151
Lemma 5.7.4 151
Lemma 5.7.5 153
Lemma 5.7.6 153
Theorem 5.7.7 153
Lemma 5.8.1 154
Lemma 5.8.2 156
Figure 5.9.1 158
Figure 5.9.2 160
Figure 6.2.1 167
Figure 6.3.1 167
Figure 6.4.1 168
Figure 6.4.2 169
Figure 6.5.1 169
Figure 6.6.1 171

Figure 6.7.1 173
Figure 6.10.1 176
Lemma 6.12.1 178
Definition 7.2.1 184
Lemma 7.2.2 185
Lemma 7.3.1 186
Lemma 7.3.2 187
Theorem 7.3.3 188
Lemma 7.5.1 191
Lemma 7.6.1 193
Theorem 7.6.2 194
Definition 7.7.1 196
Definition 7.7.2 198
Lemma 7.7.3 200
Lemma 7.7.4 202
Theorem 7.7.5 202
Lemma 7.7.6 203
Lemma 7.7.7 204
Lemma 7.7.8 205
Figure 7.7.9 208
Figure 7.7.10 210
Figure 7.7.11 211
Definition 8.3.1 222
Definition 8.3.2 222
Lemma 8.3.3 222
Lemma 8.3.4 223
Theorem 8.3.5 223
Figure 8.3.6 224
Figure 8.4.2 226
Figure 8.4.3 226
Theorem 8.4.1 226
Definition 8.5.1 227
Definition 8.5.2 228
Lemma 8.5.3 228
Definition 8.5.4 229
Lemma 8.5.5 229
Lemma 8.5.6 229
Lemma 8.5.7 229
Theorem 8.5.8 230
Figure 8.5.9 231
Figure 8.5.10 232
Definition 8.6.1 232
Definition 8.6.2 232
Lemma 8.6.3 233
Definition 8.6.4 234
Lemma 8.6.5 234
Definition 8.6.6 234
Definition 8.6.7 235
Lemma 8.6.8 235

List of definitions etc. xix

Lemma 8.6.9 235
Lemma 8.6.10 235
Lemma 8.6.11 236
Lemma 8.6.12 236
Corollary 8.6.13 237
Theorem 8.6.14 237
Lemma 8.6.15 237
Lemma 8.6.16 237
Figure 8.7.1 240
Figure 8.7.2 241
Definition 9.2.1 251
Definition 9.2.2 251
Definition 9.2.3 252
Definition 9.2.4 252
Definition 9.3.1 252
Definition 9.3.2 253
Definition 9.3.3 253
Definition 9.3.4 253
Lemma 9.4.1 256
Lemma 9.4.2 257
Lemma 9.4.3 257
Lemma 9.4.4 257
Lemma 9.4.5 258
Lemma 9.4.6 258
Theorem 9.4.7 260
Figure 10.1.1 266
Lemma 10.1.2 266
Figure 10.2.1 270
Figure 10.2.2 272
Figure 10.2.3 274
Figure 10.3.1 278
Definition 10.3.2 278
Definition 10.3.3 279
Lemma 10.3.4 279
Figure 10.3.5 281
Figure 10.3.6 282

Lemma 11.4.1 299
Lemma 11.4.2 300
Figure 11.5.1 302
Definition 11.6.1 305
Lemma 11.6.2 306
Lemma 11.6.3 307
Lemma 11.6.4 307
Theorem 11.6.5 308
Lemma 11.6.6 308
Figure A.1.1 315
Figure A.1.2 315
Lemma B.2.1 329
Theorem B.2.2 329
Fact B.3.1 331
Fact B.3.2 331
Fact B.3.3 331
Fact B.3.4 331
Fact B.3.5 331
Fact B.3.6 331
Definition B.4.1 332
Lemma B.4.2 333
Lemma B.4.3 333
Lemma B.4.4 334
Lemma B.4.5 335
Lemma B.4.6 335
Lemma B.4.7 336
Lemma B.4.8 337
Lemma B.4.9 337
Lemma B.5.1 341
Lemma B.5.2 341
Lemma B.5.3 342
Lemma B.6.1 342
Lemma B.6.2 342
Lemma B.6.3 343
Lemma B.6.4 343
Lemma B.6.5 343

Part I

Probabilistic

guarded commands

and their refinement logic

1 Introduction to pGCL 3

1.1 Sequential program logic 4
1.2 The programming language pGCL 7
1.3 An informal computational model for pGCL 11
1.4 Behind the scenes: elementary probability theory 16
1.5 Basic syntax and semantics of pGCL 18
1.6 Healthiness and algebra for pGCL 28
1.7 Healthiness example: modular reasoning 32
1.8 Interaction between probabilistic- and demonic choice . . 34
1.9 Summary . 35

Chapter notes . 36

2

2 Probabilistic loops: invariants and variants 37

2.1 Introduction: loops via recursion 38
2.2 Probabilistic invariants 39
2.3 Probabilistic termination 40
2.4 Invariance and termination together: the loop rule 42
2.5 Three examples of probabilistic loops 44
2.6 The Zero-One Law for termination 53
2.7 Probabilistic variant arguments for termination 54
2.8 Termination example: self-stabilisation 56
2.9 Uncertain termination 61
2.10 Proper post-expectations 63
2.11 Bounded vs. unbounded expectations 68
2.12 Informal proof of the loop rule 74

Chapter notes . 77

3 Case studies in termination 79

3.1 Rabin’s choice coordination 79
3.2 The dining philosophers 88
3.3 The general random “jump” 99

Chapter notes . 105

4 Probabilistic data refinement: the steam boiler 107

4.1 Introduction: refinement of datatypes 107
4.2 Data refinement and simulations 108
4.3 Probabilistic datatypes: a worked example 110
4.4 A safety-critical application: the probabilistic steam boiler 117
4.5 Summary . 123

Chapter notes . 124

1
Introduction to pGCL:
Its logic and its model

1.1 Sequential program logic 4
1.2 The programming language pGCL 7
1.3 An informal computational model for pGCL 11

1.3.1 The standard game 11
1.3.2 The probabilistic game 12
1.3.3 Expected winnings in the probabilistic game . . . 13

1.4 Behind the scenes: elementary probability theory 16
1.5 Basic syntax and semantics of pGCL 18

1.5.1 Syntax . 18
1.5.2 Shortcuts and “syntactic sugar” 19
1.5.3 Example of syntax: the “Monty Hall” game . . . 21
1.5.4 Intuitive interpretation of pGCL expectations . . 22
1.5.5 Semantics . 24
1.5.6 Example of semantics: Monty Hall again 27

1.6 Healthiness and algebra for pGCL 28
1.7 Healthiness example: modular reasoning 32
1.8 Interaction between probabilistic- and demonic choice . . 34
1.9 Summary . 35

Chapter notes . 36

4 1. Introduction to pGCL

1.1 Sequential program logic

Since the mid-1970’s, any serious student of rigorous program development
will have encountered “assertions about programs” — they are predicates
which, when inserted into program code, are supposed to be “true at that
point of the program.” Formalised — i.e. made into a logic — they look
like either

{pre} prog {post} Hoare-style
or pre ! wp.prog.post , Dijkstra-style

}
(1.1)

in each case meaning “from any state satisfying precondition pre, the se-
quential program prog is guaranteed to terminate in a state satisfying
postcondition post.” 1 Formulae pre and post are written in first-order
predicate logic over the program variables, and prog is written in a sequen-
tial programming language. Often Dijkstra’s Guarded Command Language
[Dij76], called GCL, is used in simple expositions like this one, since it
contains just the essential features, and no clutter.

A conspicuous feature of Dijkstra’s original presentation of guarded com-
mands was the novel “demonic” choice. He explained that it arose naturally
if one developed programs hand-in-hand with their proofs of correctness:
if a single specification admitted say two implementations, then a third
possibility was program code that seemed to choose unpredictably between
the two. Yet in its pure form, where for example

prog # prog ′ (1.2)

is a program that can unpredictably behave either as prog or as prog ′,
this “demonic” nondeterminism seemed at first — to some — to be an
unnecessary and in fact gratuitously confusing complication. Why would
anyone ever want to introduce unpredictability deliberately? Programs are
unpredictable enough already.

If one really wanted programs to behave in some kind of “random” way,
then more useful surely would be a construction like the

prog 1
2
⊕ prog ′ (1.3)

that behaves as prog on half of its runs, and as prog ′ on the other half. Of
course on any particular run the behaviour is unpredictable, and even over
many runs the proportions will not necessarily be exactly “50/50” — but
over a long enough period one will find approximately equal evidence of
each behaviour.

A logic and a model for programs like (1.3) was in fact provided in the
early 1980’s [Koz81, Koz85], where in the “Kozen style” the pre- and post-
formulae became real- rather than Boolean functions of the state, and #
was replaced by p⊕ in the programming language. Those logical statements

1We will use the Dijkstra-style.

1.1. Sequential program logic 5

(1.1) now took on a more general meaning, that “if program prog is run
many times from the same initial state, the average value of post in the
resulting final states is at least the actual value that pre had in the initial
state.” Naturally we are relying on the expressions’ pre and post having
real- rather than Boolean type when we speak of their average, or expected
value.

The original — standard, we call it — Boolean logic was still available
of course via the embedding false, true &→ 0, 1.

Dijkstra’s demonic # was not so easily discarded, however. Far from being
“an unnecessary and confusing complication,” it is the very basis of what
is now known as refinement and abstraction of programs. (The terms are
complementary: an implementation refines its specification; a specification
abstracts from its implementation.) To specify “set r to a square-root of
s” one could write directly in the programming language GCL

r: = −
√

s # r: =
√

s , 2 (1.4)

something that had never been possible before. This explicit, if acciden-
tal, “programming feature” caught the tide that had begun to flow in that
decade and the following: the idea that specifications and code were merely
different ways of describing the same thing (as advocated by Abrial, Hoare
and others; making an early appearance in Back’s work [Bac78] on what be-
came the Refinement Calculus [Mor88b, Bac88, Mor87, Mor94b, BvW98];
and as found at the heart of specification and development methods such
as Z [Spi88] and VDM [Jon86]).

Unfortunately, probabilistic formalisms were left behind, and did not em-
brace the new idea: replacing # by p⊕, they lost demonic choice; without
demonic choice, they lost abstraction and refinement; and without those,
they had no nontrivial path from specification to implementation, and no
development calculus or method.

2Admittedly this is a rather clumsy notation when compared with those designed
especially for specification, e.g.

r: [r2 = s] a specification statement (Back, Morgan, Morris)
(r′)2 = s (the body of) a Z schema (Abrial, Oxford)
⇀
r

2
=

↼
s VDM (Bjørner, Jones)

any r′ with (r′)2 = s then r: = r′ end a generalised substitution (Abrial)

But the point is that the specification could be written in a “programming language” at
all: it was beginning to be realised that there was no reason to distinguish the meanings
of specifications and of programs (a point finally crystallised in the subtitle Assigning

Programs to Meanings of Abrial’s book [Abr96a], itself a reference 30 years further back
to Floyd’s paper [Flo67] where it all began).

6 1. Introduction to pGCL

To have a probabilistic development method, we need both # and p⊕
— we cannot abandon one for the other. Using them together, we can for
example describe “flip a nearly fair coin” as

c: = heads 0.49⊕ tails # c: = heads 0.51⊕ tails .

What we are doing here is specifying a coin which is within 1% of being
fair — just as well, since perfect 0.5⊕ coins do not exist in nature, and so
we could never implement a specification that required one.3 This program
abstracts, slightly, from the precise probability of heads or tails.

In this introduction we will see how the seminal ideas of Floyd, Hoare,
Dijkstra, Abrial and others can be brought together and replayed in
the probabilistic context suggested by Kozen, and how the milestones of
sequential program development and refinement — the concepts of

• program assertions;

• loop invariants;

• loop variants;

• program algebra (e.g. monotonicity and conjunctivity)

— can be generalised to include probability. Our simple programming lan-
guage will be Dijkstra’s, but with p⊕ added and — crucially — demonic
choice # retained: we call it pGCL.

Section 1.2 gives a brief overview of pGCL and its use of so-called expec-
tations rather than predicates in its accompanying logic; Section 1.3 then
supplies operational intuition by relating pGCL operationally to a form of
gambling game. (The rigorous operational semantics is given in Chap. 5,
and a deeper connection with games is given in Chap. 11.) Section 1.4
completes the background by reviewing elementary probability theory.

Section 1.5 gives the precise syntax and expectation-transformer seman-
tics of pGCL, using the infamous “Monty Hall” game as an example.
Finally, in Sec. 1.6 we make our first acquaintance with the algebraic
properties of pGCL programs.

Throughout we write f.x instead of f(x) for function application of f to
argument x, with left association so that f.g.x is (f(g))(x); and we use “: =”
for is defined to be. For syntactic substitution we write expr 〈var &→ term〉

3That means that probabilistic formalisms without abstraction in their specifications
must introduce probability into their refinement operator if they are to be of any practical
use: writing for example prog #0.99 prog ′ can be given a sensible meaning even if the
probability in prog is exact [DGJP02, vBMOW03, Yin03]. But we do not follow that
path here.

1.2. The programming language pGCL 7

to indicate replacing var by term in expr. We use “overbar” to indicate
complement both for Booleans and probabilities: thus true is false, and p is
1 − p.

1.2 The programming language pGCL

We’ll use square brackets [·] to convert Boolean-valued predicates to arith-
metic formulae which, for reasons explained below, we call expectations.
Stipulating that [false] is zero and [true] is one makes [P] in a trivial
sense the probability that a given predicate P holds: if false, it holds with
probability zero; if true, it holds with probability one.4

For our first example, consider the simple program

x: = −y 1
3
⊕ x: = +y (1.5)

over integer variables x, y: Z, using the new construct 1
3
⊕ which we interpret

as “choose the left branch x: = −y with probability 1/3, and choose the
right branch with probability 1 − 1/3.”

Recall [Dij76] that for any predicate post over final states, and a standard
command prog,5 the “weakest precondition” predicate wp.prog.post acts
over initial states: it holds just in those initial states from which prog is
guaranteed to reach post. Now suppose prog is probabilistic, as Program
(1.5) is; what can we say about the probability that wp.prog.post holds in
some initial state?

It turns out that the answer is just wp.prog.[post], once we generalise
wp.prog to expectations instead of predicates. For that, we begin with the
two definitions 6

wp.(x: = E).postE : = “postE with x replaced
everywhere by E” 7

(1.6)

wp.(prog p⊕ prog ′).postE : = p ∗ wp.prog.postE
+ p ∗ wp.prog ′.postE ,

(1.7)

in which postE is an expectation, and for our example program we ask what
is the probability that the predicate “the final state will satisfy x ≥ 0” holds
in some given initial state of the program (1.5)?

To find out, we calculate wp.prog.[post] using the definitions above; that
is

4Note that this nicely complements our “overbar” convention, because for any
predicate P the two expressions [P] and

ˆ

P
˜

are therefore the same.
5Throughout we use standard to mean “non-probabilistic.”
6Here we are defining the language as we go along; but all the definitions are collected

together in Fig. 1.5.3 (p. 26).
7In the usual way, we take account of free and bound variables, and if necessary

rename to avoid variable capture.

8 1. Introduction to pGCL

wp.(x: = −y 1
3
⊕ x: = +y).[x ≥ 0]

≡8 (1/3) ∗ wp.(x: = −y).[x ≥ 0]
+ (2/3) ∗ wp.(x: = +y).[x ≥ 0]

using (1.7)

≡ (1/3) [−y ≥ 0] + (2/3) [+y ≥ 0] using (1.6)
≡ [y < 0] /3 + [y = 0] + 2 [y > 0] /3 . using arithmetic

Thus our answer is the last arithmetic formula above, which we call a “pre-
expectation” — and the probability we seek is found by reading off the
formula’s value for various initial values of y, getting

when y < 0, 1/3 + 0 + 2(0)/3 = 1/3
when y = 0, 0/3 + 1 + 2(0)/3 = 1
when y > 0, 0/3 + 0 + 2(1)/3 = 2/3 .

Those results indeed correspond with our operational intuition about the
effect of 1

3
⊕.

For our second example we illustrate abstraction from probabilities: a
demonic version of Program (1.5) is much more realistic in that we set
its probabilistic parameters only within some tolerance. We say informally
(but still precisely) that

• x: = −y is to be executed with
probability at least 1/3,

• x: = +y is to be executed with
probability at least 1/4 and

• it is certain that one or the other
will be executed.

(1.8)

Equivalently we could say that alternative x: = −y is executed with prob-
ability between 1/3 and 3/4, and that otherwise x: = +y is executed
(therefore with probability between 1/4 and 2/3).

With demonic choice we can write Specification (1.8) as

x: = −y 1
3
⊕ x: = +y # x: = −y 3

4
⊕ x: = +y , (1.9)

because we do not know or care whether the left or right alternative of #
is taken — and it may even vary from run to run of the program, resulting
in an “effective” p⊕ with p somewhere between the two extremes.9

8Later we explain the use of “≡” rather than “=”.
9We will see later that a convenient notation for (1.9) uses the abbreviation

prog p⊕q prog ′ : = prog p⊕ prog ′ & prog ′
q⊕ prog ;

we would then write it x: = −y 1
3
⊕ 1

4
x: = +y , or even x: = − y 1

3
⊕ 1

4
+y .

1.2. The programming language pGCL 9

To treat Program (1.9) we need a third definition,

wp.(prog#prog ′).postE : = wp.prog.postE min wp.prog ′.postE , (1.10)

using min because we regard demonic behaviour as attempting to make the
achieving of post as improbable as it can. Repeating our earlier calculation
(but more briefly) gives this time

wp.(Program (1.9)).[x ≥ 0]

≡ [y ≤ 0] /3 + 2 [y ≥ 0] /3
min 3 [y ≤ 0] /4 + [y ≥ 0] /4

using (1.6), (1.7), (1.10)

≡ [y < 0] /3 + [y = 0] + [y > 0] /4 . using arithmetic

Our interpretation has become

• When y is initially negative, a demon chooses the left branch of #
because that branch is more likely (2/3 vs. 1/4) to execute x: = +y
— the best we can say then is that x ≥ 0 will hold with probability
at least 1/3.

• When y is initially zero, a demon cannot avoid x ≥ 0 — either way
the probability of x ≥ 0 finally is one.

• When y is initially positive, a demon chooses the right branch because
that branch is more likely to execute x: = −y — the best we can say
then is that x ≥ 0 finally with probability at least 1/4.

The same interpretation holds if we regard # as abstraction instead of
as run-time demonic choice. Suppose Program (1.9) represents some mass-
produced physical device and, by examining the production method, we
have determined the tolerance (1.8) we can expect from a particular factory.
If we were to buy one from the warehouse, all we could conclude about its
probability of establishing x ≥ 0 is just as calculated above.

Refinement is the converse of abstraction: we have

Definition 1.2.1 Probabilistic refinement For two programs prog,
prog ′ we say that prog ′ is a refinement of prog, written prog . prog ′,
whenever for all post-expectations postE we have

wp.prog.postE ! wp.prog ′.postE (1.11)

We use the symbol ! for ≤ (extended pointwise) between expecta-
tions, which emphasises the similarity between probabilistic- and standard
refinement.10 !

10We are aware that “!” looks more like “≥” than it does “≤” ; but for us its
resemblance to “⇒” is the important thing. . . .

10 1. Introduction to pGCL

From (1.11) we see that in the special case when expectation postE is
an embedded predicate [post], the meaning of ! ensures that a refinement
prog ′ of prog is at least as likely to establish post as prog is.11 That accords
with the usual definition of refinement for standard programs — for then
we know wp.prog.[post] is either zero or one, and whenever prog is certain
to establish post (whenever wp.prog.[post] ≡ 1) we know that prog ′ also is
certain to do so (because then 1 ! wp.prog ′.[post]).

For our third example we prove a refinement: consider the program

x: = −y 1
2
⊕ x: = +y , (1.12)

which clearly satisfies Specification (1.8); thus it should refine Program
(1.9), which is just that specification written in pGCL. With Definition
(1.11), we find for any postE that

wp.(Program (1.12)).postE

≡ wp.(x: = −y).postE/2
+ wp.(x: = +y).postE/2

definition p⊕, at (1.7)

≡ postE −/2 + postE +/2 introduce abbreviations

≡ (3/5)(postE−/3 + 2postE +/3)
+ (2/5)(3postE−/4 + postE +/4)

arithmetic

" postE−/3 + 2postE +/3
min 3postE−/4 + postE +/4

any linear combination exceeds min

≡ wp.(Program (1.9)).postE .

The refinement relation (1.11) is indeed established for the two programs.
The introduction of 3/5 and 2/5 in the third step can be understood

by noting that demonic choice # can be implemented by any probabilistic
choice whatever: in this case we used 3

5
⊕. Thus a proof of refinement using

program algebra might read

Program (1.12)
= x: = −y 1

2
⊕ x: = +y

...10Similar conflicts of interest arise when logicians use “⊃” for implies although, in-
terpreted set-theoretically, implies is in fact “⊆”. And then there is “#” for refinement,
which corresponds to “⊇” of behaviours.

11We see later in this chapter, however, and in Sec. A.1, that it is not sound to consider
only post-expectations postE of the form [post] in Def. 1.2.1: it is necessary for refine-
ment, but not sufficient, that prog ′ be at least as likely to establish any postcondition
post as prog is.

1.3. An informal computational model for pGCL 11

= (x: = −y 1
3
⊕ x: = +y)

3
5
⊕ (x: = −y 3

4
⊕ x: = +y)

Sec. B.1 Law 4

/ x: = −y 1
3
⊕ x: = +y

x: = −y 3
4
⊕ x: = +y

(") # (p⊕) for any p 12

= Program (1.9) .

1.3 An informal computational model:
pGCL describes gambling

We now use a simple card-and-dice game as an informal introduction to the
computational model for pGCL, to support the intuition for probabilistic
choice, demonic choice and their interaction. To start with, we consider the
simplest case: non-looping programs without # or p⊕.

1.3.1 The standard game

Imagine we have a board of numbered squares, and a selection of numbered
cards laid on it with at most one card per square; winning squares are
indicated by coloured markers. The squares are the program states; the
program is the pattern of numbered cards; the coloured markers indicate
the postcondition.

To play the game

An initial square is chosen (according to certain rules which do
not concern us); subsequently

• if the square contains a card the card is removed, and play
continues from the square whose number appeared on the
card, and

• if the square does not contain a card, the game is over.

When the game is over the player has won if his final square
contains a marker — otherwise he has lost.

This simple game is deterministic: any initial state always leads to the
same final state. And because the cards are removed after use it is also guar-
anteed to terminate, if the board is finite. It is easily generalised however
to include other features of standard programs:

12By (&) # (p⊕) we mean that for all prog, prog ′ we have

prog & prog ′ # prog p⊕ prog ′,

which is an instance of our Law 7 given on p. 323, in Sec. B.1 on program algebra.

12 1. Introduction to pGCL

looping If the cards are not removed after use, the game can “loop.” A
looping-forever player loses.

aborting If a card reads go to jail, the program is said to “abort” and
the player can be sent to any square whatever, including a special
supplementary “jail” square from which there is no escape. A jailed
player loses.

demonic nondeterminism If each square can contain several cards, face-
down, and the rules are modified so that the next state is determined
by choosing just one of them “blind,” then play is nondeterministic.
Taking the demonic (pessimistic) view, the player should expect to
lose unless he is guaranteed to reach a winning position no matter
which blind choices he makes.

In the standard game, for each (initial) square one can examine the cards
before playing to determine whether a win is guaranteed from there. But
once the game has started, the cards are turned face-down.

The set of squares from which a win is guaranteed is the weakest
precondition.13

1.3.2 The probabilistic game

Suppose now that each card contains not just one but, rather, a list of
successor squares, and the choice from the list is made by rolling a die. In
this deterministic game,14 play becomes a succession of die rolls, taking the
player from square to square; termination (no card) and winning (marker)
are defined as before.

When squares can contain several cards face down, each with a separate
list of successors to be resolved by die roll, we are dealing with probability
and demonic nondeterminism together: first the card is chosen “blind” (i.e.
demonically); the card is turned over and a die roll (probability) determines
which of its listed alternatives to take.

In the probabilistic game one can ask for the greatest guaranteed prob-
ability of winning; as in the standard case, the prediction will vary
depending on the initial square. (It’s because of demonic nondeterminism,
as illustrated below, that the probability might be only a lower bound.)

13A glance at Fig. 6.7.1 (p. 173) will show where we are headed in the visualisation of
probabilistic preconditions!

14Note that we still call this game “deterministic,” in spite of the probabilistic choices,
and there are good mathematical reasons for doing so. (In Chap. 5, for example, we see
that such programs are maximal in the refinement order.) An informal justification is
that deterministic programs are those with repeatable behaviours and, even for proba-
bilistic programs, the output distribution is repeatable (to within statistical confidence
measures) provided the program contains no demonic choice; see e.g. p. 135.

1.3. An informal computational model for pGCL 13

In Fig. 1.3.1 is an example game illustrating some of the above points.
The greatest guaranteed probability of winning from initial state 0 is only
1/2, in spite of the fact that the player can win every time if he is lucky
enough to choose the first card in the pile; but he might be unlucky enough
never to choose the first card, and we must assume the worst.

1.3.3 Expected winnings in the probabilistic game

For standard programs, the computational model of execution supports a
complementary, “logical” view — given a set of final states (the postcon-
dition) we can examine the program to determine the largest set of initial
states (the weakest precondition) from which execution of the program
is guaranteed to reach the designated final states. The sets of states are
predicates, and the program is being regarded as a predicate transformer.

Regarding sets of states as characteristic functions (from the state space
into {0, 1}), we generalise to “probabilistic predicates” by extending the
range of those functions to all of R≥, the non-negative reals.15

Probabilistic programs become functions from probabilistic postcon-
ditions to probabilistic weakest preconditions — we call them post-
expectations and greatest pre-expectations. The corresponding generalisa-
tion in the game is as follows.

Rather than placing winning markers on the board, we place money —
rather than strictly winning or losing, the player simply keeps whatever
money he finds in his final square. In Fig. 1.3.2 we show the effect of
translating our original game. In fact, not much changes: the probability
of winning (in Fig. 1.3.1) translates into the equivalent expected payoff
(Fig. 1.3.2) as the corresponding fraction of £1, illustrating this important
fact:

The expected value of a characteristic function over a distri-
bution is the same as the probability assigned to the set that
function describes.

Thus using expectations is at least as general as using probabilities explic-
itly, since we can always restrict ourselves to {0, 1}-valued functions from
which probabilities are then recovered.

For probabilistic programs, the operational interpretation of execution
thus supports a “logical” view also — given a function from final states
to R≥ (the post-expectation) one can examine the program beforehand
to determine for each initial state the minimum expected (or “aver-
age”) win when the game is played repeatedly from there (the greatest
pre-expectation) — also therefore a function from states to R≥.

15In later chapters we will be more precise about the range of expectations, requiring
them in particular to be bounded above.

14 1. Introduction to pGCL

0 1

2 3

4 5 6

To play from a square, you first pick one of the face-down cards. (In the diagram,
we are seeing what’s on the cards with our x-ray vision.) Then you roll a die to
choose one of the alternatives on the card. (In this case the die is two-sided, i.e.
it is a coin.)
As special cases, a standard step (non-probabilistic) has only one alternative per
card, but possibly many cards; and a deterministic step has only one card, but
possibly many alternatives on it. A standard and deterministic step has one card,
and only one alternative.

The winning final positions — the postcondition — are the states {4, 5}, marked
with a £1 coin. From initial state 2 a win is guaranteed; from state 0 or 1 the
minimum guaranteed probability of winning is 1/2; from state 3 the minimum
probability is zero, since the second card might be chosen every time.

The probabilities are summarised in Fig. 1.3.2.

Figure 1.3.1. Card-and-dice game operational semantics for pGCL

1.3. An informal computational model for pGCL 15

The post-expectation:

Final state 0 1 2 3 4 5 6
Payoff awarded if this state reached 0 0 0 0 £1 £1 0

The probability of winning (ending on a £1) (from Fig. 1.3.1):

Initial state 0 1 2 3 4 5 6
Greatest guaranteed probability of winning 1/2 1/2 1 0 1 1 0

The greatest pre-expectation:

Initial state 0 1 2 3 4 5 6
Greatest guaranteed expected payoff 50p 50p £1 0 £1 £1 0

Figure 1.3.2. A probabilistic and nondeterministic gambling game

Since the functions are expectations, the program is being regarded as an
expectation transformer.16

We are not limited to £1 coins for indicating postconditions — that is
only an artefact of embedding standard postconditions into the probabilis-
tic world. In general any amount of money can be placed in a square, and
that is the key to allowing a smooth sequential composition of programs
at the logical level — for if the program game of Fig. 1.3.2 were executed
after some other program prog, the precondition of the two together with
respect to the postcondition {4, 5} would be calculated by applying wp.prog
to the greatest pre-expectation table for game. That is because sequential
composition of programs becomes, as usual, functional composition of the
corresponding transformers: we have

wp.(prog; game).{4, 5} : = wp.prog.(

expected win table
︷ ︸︸ ︷
wp.game.{4, 5}) ,

and that table contains non-integer values (for example 50p).
Another reason for allowing arbitrary values in R≥ is that using only

standard postconditions ({0, 1}-valued) — equivalently, using explicit prob-
abilities (recall the important fact above) — is not discriminating enough
when nondeterminism is present: certain programs are identified that
should be distinguished, and the semantics becomes non-compositional.
(See Sec. A.1 for why this happens.)

16For deterministic (yet probabilistic) programs, the card-game model and the associ-
ated transformers are essentially Kozen’s original construction [Koz81, Koz85]. We have
added demonic (and later angelic) nondeterminism.

16 1. Introduction to pGCL

1.4 Behind the scenes: elementary probability
theory

In probability theory, an event is a subset of some given sample space S, so
that the event is said to have occurred if the sampled value is in that set;
a probability distribution Pr over the sample space is a function from its
events into the closed interval [0, 1], giving for each event the probability
of its occurrence. In the general case, for technical reasons, not necessarily
all subsets of the sample space are events.17

In our case we consider countable sample spaces, and take every (sub-)set
of S to be an event — and so we can regard a probability distribution more
simply as a function from S directly to probabilities (rather than from its
subsets). Thus Pr: S → [0, 1], and the probability of a more general event is
now just the sum of the probabilities of its elements: we are using discrete
distributions.18

A random variable X is a function from the sample space to the non-
negative reals;19 and the expected value Exp.X of that random variable is
defined in terms of the (discrete) probability distribution Pr; we have the
summation

Exp.X : = (
∑

s∈S

Pr .s ∗ X.s) . 20 (1.13)

It represents the “average” value of X.s over many repeated samplings
of s according to the distribution Pr.21

In fact expected values can also be characterised without referring
directly to an underlying probability distribution:

If a function Exp is of type (S → R≥) → R≥, and it is

non-negative so that Exp.X ≥ 0 for all X : S → R≥,
linear so that for X, Y : S → R≥ and c, d: R≥ we have

Exp.(c ∗ X + d ∗ Y) = c ∗ Exp.X + d ∗ Exp.Y

17This may occur if the sample space is uncountable, for example; the general
technique for such cases involves σ-algebras [GS92]. See Footnote 7 on p. 297 for an
example.

18The price paid for using discrete distributions is that there are some “everyday”
situations we cannot describe, such as the uniform “continuous” distribution over the
real interval [0, 1] that might be the result of the program “choose a real number x
randomly so that 0 ≤ x ≤ 1.” We get away with it because no such program can be
written in pGCL — at least, not at this stage.

19Footnote 12 on p. 134 gives a more generous definition.
20Although the parentheses may look odd around

P

— we write (
P

· · ·) rather
than

P

(· · ·) — we always indicate the scope of bound variables (like s) with explicit
delimiters, since it helps to avoid errors when doing calculations.

21Our “important fact” (p. 13) is now stated “if X is the characteristic function of
some event P , then Exp.X is the probability that event P will occur.”

1.4. Behind the scenes: elementary probability theory 17

and normalised so that it satisfies Exp.1 = 1, where 1 is the
constant function returning 1 for all arguments in S,

then it is an expectation over some probability distribution: it
can be shown that it is expressible uniquely in the form (1.13)
for some Pr.22

The relevance of the above is that our real-valued expressions over the
state — what we are calling “expectations” — are random variables, and
that the expression

wp.prog.postE , (1.14)

as a function of initial values for the state variables, is a random variable
as well. As a function of state variables, it is the expected value of the
random variable postE (also a function of state variables, but those taken
after execution) over the distribution of final states produced by executions
of prog, and so

preE ! wp.prog.postE (1.15)

says that preE gives in any initial state a lower bound for the expected
value of postE in the final distribution reached via execution of prog begun
in that initial state.

In general, we call random variables post-expectations when they are to
be evaluated in a final state, and we call them pre-expectations when they
are calculated as at (1.14). And, like pre- and postconditions in standard
programs, if placed “between” two programs a single random variable is a
post-expectation for the first and a pre-expectation for the second.

But how do prog and an initial state determine a distribution? In fact the
underlying distributions are found on the cards of the game from Sec. 1.3
— the sample space is the set of squares, and each card gives an explicit
distribution over that space. If we consider the deterministic game, and
regard “make one move in the game” as a program in its own right, then
we have a function from initial state to final distribution — the function
taking a square to the card that square contains.23 For any postcondition
postE written, say, as an expression over names N of squares, and initial
square N0, the expression wp.move.postE 〈N &→ N0〉 is the expectation of
postE over the distribution of square names given on the card found at N0.

22It is a special case of the Riesz Representation Theorem which states, loosely speak-
ing, that knowledge of the expectation (assumed to be given directly) of every random
variable uniquely determines an underlying probability distribution. See for instance
Feller [Fel71, p. 135].

23For nondeterministic programs we are thus considering a function from state to
sets of distributions, from a square to the set of cards there; again we see the general
computational model underlying the expectation-transformer semantics.

18 1. Introduction to pGCL

For example, in Figs. 1.3.1 and 1.3.2 we see the above features: program
move is given by the layout of the cards (Fig. 1.3.1); and the resulting pre-
and post-expectations are tabulated in Fig. 1.3.2. All three tables there are
random variables over the state space {0, · · · , 6}.

When we move to more general programs, we must relax the conditions
that characterise expectations. If prog is possibly nonterminating — if it is
recursive or contains abort — then wp.prog.postE may violate the normal-
isation condition Exp.1 = 1. However as a function which satisfies the first
two conditions it can still be regarded as an expectation in a weak sense.
That was shown by Kozen [Koz81] and later Jones [Jon90], who defined
expectations with regard to “probability distributions” which may sum to
less than one. Those are in fact a special case of Jones’s evaluations,24 and
she gave conditions similar to the above for their existence [Jon90, p. 117].

Finally, if program prog is not deterministic then we move further away
from elementary theory, because wp.prog.postE is no longer an expectation
even in the weak sense: it not linear. It is still however the minimum of
a set of expectations: if prog and prog ′ are deterministic programs then
wp.(prog # prog ′).postE is the pointwise minimum of the two expecta-
tions wp.prog.postE and wp.prog ′.postE. This definition is one of the main
features of this approach.

Thus although linearity is lost, it is not gone altogether: we retain so-
called sub-linearity,25 which implies that for any c1, c2: R≥ and any program
prog we still have

wp.prog.(c1 ∗ postE1 + c2 ∗ postE2)
" c1 ∗ wp.prog.postE1 + c2 ∗ wp.prog.postE2 .

And clearly non-negativity continues to hold.
The characterisations of expectations given above for the simpler cases

might suggest that non-negative and sublinear functionals uniquely deter-
mine a set of probability distributions — and, in Chap. 5, that is indeed
shown to be the case: sublinearity is the key “healthiness condition” for
expectation transformers.26

1.5 Basic syntax and semantics of pGCL

1.5.1 Syntax

Let prog range over programs and p over real number expressions taking
values between zero and one inclusive; assume that x stands for a list of
distinct variables, and expr for a list of expressions (of the same length as x

24She was working in a much more general context.
25The actual property is slightly more general than we give here; see Sec. 1.6.
26Halpern and Pucella [HP02] have recently studied similar properties.

1.5. Basic syntax and semantics of pGCL 19

where appropriate); and let the program scheme C be a program in which
program names like xxx can appear. The syntax of pGCL is as follows:

prog : = abort | skip | x: = E | prog; prog |
prog p⊕ prog | prog # prog |
(mu xxx · C)

(1.16)

The first four constructs, namely abort, skip, assignment and sequential
composition, are just the conventional ones [Dij76].

The remaining constructs are for probabilistic choice, nondeterministic
choice and recursion: given p in the closed interval [0, 1] we write prog p⊕
prog ′ for the probabilistic choice between programs prog and prog ′; they
have probability p and 1−p respectively of being selected. In many cases
p will be a constant, but in general it can be an expression over the state
variables.

1.5.2 Shortcuts and “syntactic sugar”

For convenience we extend our logic and language with the following
notations.

Boolean embedding — For predicate pred we write [pred] for the
expectation “1 if pred else 0 ”.27

Conditional — The conditional

prog if pred else prog ′

or if pred then prog else prog ′ fi ,

chooses program prog (resp. prog ′) if Boolean pred is true (resp. false).
It is defined prog [pred]⊕ prog ′ .

If else is omitted then else skip is assumed. (See also the “hybrid”
conditional of Sec. 3.1.2.)

Implication-like relations — For expectations exp, exp′ we write

exp ! exp′ for exp is everywhere less than or equal to exp′

exp ≡ exp′ for exp and exp′ are everywhere equal

exp " exp′ for exp is everywhere greater than or equal to exp′

We distinguish exp ! exp′ from exp ≤ exp′ — the former is a state-
ment about exp and exp′, thus true or false as a whole; the latter
is itself a Boolean-valued expression over the state, possibly true in
some states and false in others.28 Similarly we regard exp = exp′ as

27We will not distinguish predicates from Boolean-valued expressions.
28Note that exp ⇒ exp′ is different again, in fact badly typed if exp and exp′ are

expectations: one real-valued function cannot “imply” another.

20 1. Introduction to pGCL

true in just those states where exp and exp′ are equal, and false in
the rest.
The closest standard equivalent of ! is the entailment relation |=
between predicates29 — and in fact post |= post ′ exactly when
[post] ! [post ′], meaning that the “embedding” of |= is !.

Multi-way probabilistic choices — A probabilistic choice over N
alternatives can be written horizontally

(prog1 @ p1 | · · · | progN @ pN)

or vertically
∣∣∣∣∣∣∣∣∣

prog1 @ p1

prog2 @ p2
...

progN @ pN

in which the probabilities are enumerated and sum to no more
than one.30 We can also write a “probabilistic comprehension”
([] i: I · progi @ pi) over some countable index set I. In general, we
have

wp.(prog1 @ p1 | · · · | progN @ pN).postE
: = p1 ∗ wp.prog1.postE + · · · + pN ∗ wp.progN .postE .

It means “execute prog1 with probability at least p1, and prog2 with
probability at least p2. . . ”31

If the probabilities sum to 1 exactly, then it is a simple N -way prob-
abilistic branch; if there is a deficit 1−Σipi, it gives the probability
of aborting.
When all the programs progi are assignments with the same left-hand
side, say x: = expri, we write even more briefly

x: = (expr1 @ p1 | · · · | exprN @ pN) .

Variations on p⊕ — By prog ⊕p prog ′ we mean prog ′
p⊕ prog, and in

general we write prog p⊕p′ prog ′ for
∣∣∣∣∣∣

prog @ p
prog ′ @ p′

prog # prog ′ @ 1 − (p+p′) ,

the program that executes prog with probability at least p and prog ′

29One predicate entails another, written |=, just when it implies the other in all
states.

30See Sec. 4.3 for an example of the vertical notation.
31It is “at least pi” because if the probabilities sum to less than one there will be an

“aborting” component, which might behave like progi.

1.5. Basic syntax and semantics of pGCL 21

with probability at least p′; we assume p + p′ ≤ 1.
By ≥p⊕ we mean p⊕ 0, and so on. (See also (B.3) on p. 328.)

Demonic choice — We write demonic choice between assignments to
the same variable x as

x:∈ {expr1, expr2, · · ·} ,
or x: = expr1 # expr2 # · · · ,

(1.17)

in each case abbreviating x: = expr1#x: = expr2#· · ·. More generally
we can write x:∈ expr or x: 1∈ expr if expr is set-valued, provided the
implied choice is finite.32

Iteration — The construct (mu xxx · C) behaves as prescribed by the
program context C except that it invokes itself recursively whenever
it reaches a point where the program name xxx appears in C. Then,
in the usual way, iteration is a special case of recursion:

do pred → body od

: = (mu xxx · (body ; xxx) if pred else skip) . 33 (1.18)

1.5.3 Example of syntax: the “Monty Hall” game

We illustrate the syntax of our language with the example program of
Fig. 1.5.1. There are three curtains, labelled A, B and C, and a prize is
hidden nondeterministically behind one of them, say pc. A contestant hopes
to win the prize by guessing where it is hidden: he chooses randomly to

32None of our examples requires a choice from the empty set. We see later that the
finiteness requirement is so that our programs will be continuous (Footnote 60 on p. 71);
and in some cases — for example, the third and fourth statements of the program shown
in Fig. 1.5.1 — we rely on type information for that finiteness.

33An equivalent but simpler formulation is given by the least fixed-point definition

wp.(do pred → body od).R : = (µQ · wp.body.Q if pred else R) , (1.19)

which matches Dijkstra’s original formulation more closely [Dij76]. But there is some
technical work required to get between the two, as we explain later at (7.12). The
expression on the right can be read

the least pre-expectation Q such that

Q ≡ wp.body.Q if pred else R ,

and is called a fixed point because placing Q in the expression does not alter its value
— this is the mathematical equivalent of “and the same again” when the loop returns
to its starting point for potentially more iterations.

The “least,” for us, means the lowest expectation — that reflects the view, appropriate
for elementary sequential programming, that unending iteration should have little worth
(in fact, zero). For standard programming, the order is false ≤ true so that taking the
least fixed-point means adopting the view that an infinite loop does not establish any
postcondition (i.e., has precondition false).

A more discriminating treatment of unending computations is given in Part III.

22 1. Introduction to pGCL

pc:∈ {A, B, C}; Prize hidden behind curtain.
cc: = (A @ 1

3 | B @ 1
3 | C @ 1

3); Contestant chooses randomly.
ac: %∈ {pc, cc}; Another curtain opened; it’s empty.
(cc: %∈ {cc, ac}) if clever else skip Changes his mind — or not?

The three “curtain” variables ac, cc, pc are of type {A, B, C}.
Written in full, the first three statements would be

pc: = A " pc: = B " pc: = C;
cc: = A 1

3
⊕ (cc: = B 1

2
⊕ cc: = C);

ac:∈ {A, B, C}− {pc, cc} .

The fourth statement is written using %∈ just for convenience — in fact it executes
deterministically, since cc and ac are guaranteed to be different at that point.

Figure 1.5.1. The “Monty Hall” program

point to curtain cc. The host then tries to get the contestant to change his
choice, showing that the prize is not behind some other curtain ac — which
means that either the contestant has chosen it already or it is behind the
other closed curtain.

Should the contestant change his mind?

1.5.4 Intuitive interpretation of pGCL expectations

In its full generality, an expectation is a function describing how much each
program state is “worth.”

The special case of an embedded predicate [pred] assigns to each state
a worth of zero or of one: states satisfying pred are worth one, and states
not satisfying pred are worth zero. The more general expectations arise
when one estimates, in the initial state of a probabilistic program, what
the worth of its final state will be. That estimate, the “expected worth” of
the final state, is obtained by summing over all final states

the worth of the final state multiplied by the probability the
program “will go there” from the initial state.

Naturally the “will go there” probabilities depend on “from where,” and
so that expected worth is a function of the initial state.

When the worth of final states is given by [post], the expected worth of
the initial state turns out to be just the probability that the program will
reach post. That is because

1.5. Basic syntax and semantics of pGCL 23

expected worth of initial state

≡ (probability prog reaches post)
∗ (worth of states satisfying post)

+ (probability prog does not reach post)
∗ (worth of states not satisfying post)

≡ (probability prog reaches post) ∗ 1
+ (probability prog does not reach post) ∗ 0

≡ probability prog reaches post ;

note we have relied on the fact that all states satisfying post have worth
one.

More general analyses of programs prog in practice lead to conclusions
of the form

p ≡ wp.prog.[post]

for some p and post which, given the above, we can interpret in two
equivalent ways:

• the expected worth [post] of the final state is at least the value of p
in the initial state; or

• the probability that prog will establish post is at least p.34

Each interpretation is useful, and in the following example we can see
them acting together: we ask for the probability that two fair coins when
flipped will show the same face, and calculate

wp.

(
x: = H 1

2
⊕ x: = T ;

y: = H 1
2
⊕ y: = T

)
.[x = y]

≡ 1
2
⊕, : = and sequential composition 35

wp.(x: = H 1
2
⊕ x: = T).([x = H] /2 + [x = T] /2)

≡ (1/2)([H = H] /2 + [H = T]/2)
+ (1/2)([T = H] /2 + [T = T] /2)

1
2
⊕ and :=

34We must say “at least” in general, because possible demonic choice in prog means
that the pre-expectation is only a lower bound for the actual expected value the program
could deliver; and some analyses give only the weaker p ! wp.prog.[post] in any case.
See also Footnote 14 on p. 89.

35See Fig. 1.5.3 for this definition.

24 1. Introduction to pGCL

≡ (1/2)(1/2 + 0/2) + (1/2)(0/2 + 1/2) definition [·]
≡ 1/2 . arithmetic

We can then use the second interpretation above to conclude that the faces
are the same with probability 1/2.36

But part of the above calculation involves the more general expression

wp.(x: = H 1
2
⊕ x: = T).([x = H] /2 + [x = T] /2) , (1.20)

and what does that mean on its own? It must be given the first inter-
pretation, that is as an expected worth, since “will establish [x = H] /2 +
[x = T] /2” makes no sense. Thus it means

the expected value of the expression [x = H] /2 + [x = T] /2
after executing the program x: = H 1

2
⊕ x: = T ,

which the calculation goes on to show is in fact 1/2. But for our overall
conclusions we do not need to think about the intermediate expressions —
they are only the “glue” that holds the overall reasoning together.37

1.5.5 Semantics

The probabilistic semantics is derived from generalising the standard se-
mantics in the way suggested in Sec. 1.3. Let the state space be S.

Definition 1.5.2 Expectation space The space of expectations over
S is defined

ES : = (S → R≥, !) ,

where the entailment relation !, as we have seen, is inherited pointwise
from the normal ≤ ordering in R≥. The expectation-transformer model for
programs is

TS : = (ES ← ES,.) ,

where we write the functional arrow backward just to emphasise that such
transformers map final post-expectations to initial pre-expectations, and
where the refinement order . is derived pointwise from entailment ! on
ES. !

36(Recall Footnote 34.) If we do know, by other means say, that the program is
deterministic (though still probabilistic), then we can say the pre-expectation is exact.

37See p. 271 for an example of this same analogy, but in the context of temporal logic.

1.5. Basic syntax and semantics of pGCL 25

Although both ES and TS are lattices, neither is a complete partial
order,38 because R≥ itself is not. (It lacks an adjoined ∞ element.) In
addition, when S is infinite (see e.g. Sec. 8.2 of Part II) we must impose
the condition on elements of ES that each of them be bounded above by
some non-negative real.39

In Fig. 1.5.3 we give a probabilistic semantics to the constructs of our
language. It has the important feature that the standard programming
constructs behave as usual, and are described just as concisely.

Note that our semantics states how wp.prog in each case transforms an
expression in the program variables: that is, we give a procedure for calcu-
lating the greatest pre-expectation by purely syntactic manipulation. An
alternative view is to see the post-expectations as mathematical functions
of type ES, and the expressions wp.prog are then of type TS.

The expression-based view is more convenient in an introduction, and
for the treatment of specific programs; the function-based view is more
convenient (and, for recursion, necessary) for general properties of expec-
tation transformers. In this chapter and the rest of Part I we retain the

38A partial order differs from the familiar “total” orders like “≤” in that two el-
ements can be “incomparable”; the most common example is subset ⊆ between sets,
which satisfies reflexivity (a set is a subset of itself), anti-symmetry (two sets cannot
be subsets of each other without being the same set) and transitivity (one set within
a second within a third is a subset of the third directly as well). But it is not true that
for any two sets one is necessarily a subset of the other.

A lattice is a non-empty partially ordered set where for all x, y in the set there is a
greatest lower bound x& y and and a least upper bound x- y. This holds e.g. for
the lattice of sets, as above; but the collection of non-empty sets is not a lattice, because
x ∩ y (which is how x & y is written for sets) is not necessarily non-empty even if x and
y are.

A partial order # is chain- or directed complete — then called a cpo — when it
contains all limits of chains or directed sets respectively, where a chain is a set totally
ordered by # and a set is #-directed if for any x, y in the set there is a z also in the
set such that x, y # z. (Since a chain is directed, directed completeness implies chain
completeness; in fact with the Axiom of Choice, chain- and directed completeness are
equivalent.)

All of these details can be found in standard texts [DP90].
39There is a difference between requiring that there be an upper bound for all expec-

tations (we do not) and requiring that each expectation separately have an upper bound
(we do).

In the first case, we would be saying that there is some M such that every expectation
α in ES satisfied α ! M . That would be convenient because it would make both ES
and TS complete partial orders, trivially; and that would e.g. allow us to use a standard
treatment of fixed points.

But we adopt the second case where, for each expectation α separately, there is some
Mα such that α ! Mα; and, as α varies, these Mα’s can increase without bound. That
is why ES is not complete and is, therefore, why we will need a slightly special argument
when dealing with fixed points.

26 1. Introduction to pGCL

wp.abort.postE : = 0
wp.skip.postE : = postE

wp.(x: = expr).postE : = postE 〈x (→ expr〉
wp.(prog ; prog ′).postE : = wp.prog.(wp.prog ′.postE)

wp.(prog " prog ′).postE : = wp.prog.postE min wp.prog ′.postE
wp.(prog p⊕ prog ′).postE : = p ∗ wp.prog.postE + p ∗ wp.prog ′.postE

Recall that p is the complement of p.

The expression on the right gives the greatest pre-expectation of postE with re-
spect to each pGCL construct, where postE is an expression of type ES over the
variables in state space S. (For historical reasons we continue to write wp instead
of gp.)

In the case of recursion, however, we cannot give a purely syntactic definition.
Instead we say that

(mu xxx · C) := least fixed-point of the function cntx: TS → TS
defined so that cntx.(wp.xxx) = wp.C. 40

Figure 1.5.3. Probabilistic wp-semantics of pGCL

expression-based view as far as possible; but in Part II we use the more
mathematical notation. (See for example Sec. 5.3.)

The worst program abort cannot be guaranteed to terminate in any
proper state and therefore maps every post-expectation to 0. The imme-
diately terminating program skip does not change anything, therefore the
expected value of post-expectation postE after execution of skip is just its
actual value before. The pre-expectation of the assignment x: = expr is
the postcondition with the expression expr substituted for x. Sequential
composition is functional composition. The semantics of demonic choice #
reflects the dual metaphors for it: as abstraction, we must take the mini-
mum because we are giving a guarantee over all possible implementations;
as a demon’s behaviour, we assume he acts to make our expected winnings
as small as possible.

The pre-expectation of probabilistic choice is the weighted average of the
pre-expectations of its branches. Since any such average is no less than the
minimum it follows immediately that probabilistic choice refines demonic

40Because TS is not complete, to ensure existence of the fixed point we insist that
the transformer-to-transformer function cntx be “feasibility-preserving,” i.e. that if ap-
plied to a feasible transformer it returns a feasible transformer again. “Feasibility” of
transformers is one of the “healthiness conditions” we will encounter in Sec. 1.6. For
convenience, we usually assume that cntx is continuous as well.

See Lem. 5.6.8 on p. 148.

1.5. Basic syntax and semantics of pGCL 27

choice, which corresponds to our intuition. In fact we consider probabilistic
choice to be a deterministic programming construct; that is we say that a
program is deterministic if it is free of demonic nondeterminism unless it
aborts.41

Finally, recursive programs have least-fixed-point semantics as usual.

1.5.6 Example of semantics: Monty Hall again

We illustrate the semantics by returning to the program of Fig. 1.5.1. Con-
sider the post-expectation [pc = cc], which takes value one just in those
final states in which the candidate has correctly chosen the prize. Work-
ing backwards through the program’s four statements, we have first (by
standard wp calculations) that

wp. ((cc: 1∈ {cc, ac}) if clever else skip) .[pc = cc]
≡ [clever] ∗ [{ac, cc, pc} = {A, B, C}] + [¬clever] ∗ [pc = cc] ,

because (in case clever) the nondeterministic choice is guaranteed to pick
pc only when it cannot avoid doing so.42

Standard reasoning suffices for our next step also:

wp. (ac: 1∈ {pc, cc}).
([clever] ∗ [{ac, cc, pc} = {A, B, C}] + [¬clever] ∗ [pc = cc])

≡ [clever] ∗ [pc 1= cc] + [¬clever] ∗ [pc = cc] .

For the clever case note that {ac, cc, pc} = {A, B, C} holds (in the post-
expectation) iff all three elements differ, and that the statement itself
establishes only two of the required three inequalities — that ac 1= pc
and ac 1= cc. The weakest precondition supplies the third.

For the ¬clever case note that neither pc nor cc is assigned to by
ac: 1∈ {pc, cc}, so that pc = cc holds afterwards iff it held before.

The next statement is probabilistic, and so produces a probabilistic pre-
expectation involving the factors 1/3 given explicitly in the program; we
have

wp. (cc: = (A @ 1
3 | B @ 1

3 | C @ 1
3)).

([clever] ∗ [pc 1= cc] + [¬clever] ∗ [pc = cc])

≡ [clever] /3 ∗ ([pc 1= A] + [pc 1= B] + [pc 1= C])
+ [¬clever] /3 ∗ ([pc = A] + [pc = B] + [pc = C])

41Some writers call that pre-determinism: “deterministic if terminating.”
42In Fig. 1.5.1 we said that this fourth statement “executes deterministically”; yet

here we have called it nondeterministic.
On its own, it is nondeterministic; but in the context of the program its nondetermin-

ism is limited to making a choice from a singleton set, as our subsequent calculations
will show.

28 1. Introduction to pGCL

≡ ([clever] /3) ∗ 2 + ([¬clever] /3) ∗ 1 type of pc is {A, B, C} 43

≡ 2 [clever] /3 + [¬clever] /3 .

Then for the first statement pc:∈ {A, B, C} we only note that pc does
not appear in the final condition above, thus leaving it unchanged under
wp: with simplification it becomes

(1 + [clever])/3 ,

which is thus the pre-expectation for the whole program.
Since the post-expectation [pc = cc] is standard (it is the characteristic

function of the set of states in which pc = cc), we are able to interpret the
pre-expectation directly as the probability that pc = cc will be satisfied on
termination: we conclude that the contestant has 2/3 probability of finding
the prize if he is clever, and only 1/3 if he is not.

1.6 Healthiness and algebra for pGCL

Recall that all standard GCL constructs satisfy the important property of
conjunctivity44 — that is, for any GCL command prog and post-conditions
post, post ′ we have

wp.prog.(post ∧ post ′) = wp.prog.post ∧ wp.prog.post ′ .

That “healthiness condition” [Dij76] is used to prove many general
properties of programs.

In pGCL the healthiness condition becomes “sublinearity,” a generalisa-
tion of conjunctivity: 45

Definition 1.6.1 Sublinearity of pGCL Let c0, c1, c2 be non-negative
reals, and postE1, postE2 expectations; then all pGCL constructs prog
satisfy

wp.prog.(c1 ∗ postE1 + c2 ∗ postE2 5 c0)
" c1 ∗ wp.prog.postE1 + c2 ∗ wp.prog.postE2 5 c0 ,

which property of prog is called sublinearity. Truncated subtraction 5 is
defined

x5 y : = (x − y) max 0 ,

43Footnote 50 on p. 33 explains how typing might be propagated this way.
44They satisfy monotonicity too, which is implied by conjunctivity.
45Having discovered a probabilistic analogue of conjunctivity, we naturally ask for an

analogue of disjunctivity. That turns out to be “super-linearity” — which when combined
with sublinearity gives (just) linearity, and is characteristic of deterministic probabilistic
programs, just as disjunctivity (with conjunctivity) characterises deterministic standard
programs. See Sec. 8.3.

1.6. Healthiness and algebra for pGCL 29

the maximum of the normal difference and zero. It has syntactic precedence
lower than +. !

Although it has a strange appearance, from sublinearity we can extract
a number of very useful consequences, as we now show. We begin with
monotonicity, feasibility and scaling.46

Definition 1.6.2 Healthiness conditions

• monotonicity: increasing a post-expectation can only increase the
pre-expectation. Suppose postE ! postE ′ for two expectations
postE, postE ′; then

wp.prog.postE ′

≡ wp.prog.(postE + (postE ′ − postE))

" postE ′−postE " 0, hence well defined;
sublinearity with c0, c1, c2 : = 0, 1, 1

wp.prog.postE + wp.prog.(postE ′−postE)

" wp.prog.postE . 0 ! wp.prog.(postE ′−postE)

• feasibility: pre-expectations cannot be “too large.” First note that

wp.prog.0
≡ wp.prog.(2 ∗ 0)
" 2 ∗ wp.prog.0 , sublinearity with c0, c1, c2 : = 0, 2, 0

so that wp.prog.0 must be zero.
Now write max postE for the maximum of postE over all its variables’
values; then

0
≡ wp.prog.0 feasibility above

≡ wp.prog.(postE5max postE) postE,max postE ≡ 0
" wp.prog.postE 5 max postE . c0, c1, c2 : = max postE,1,0

But from 0 " wp.prog.postE 5 max postE we have trivially that

wp.prog.postE ! max postE , (1.21)

which we identify as the feasibility condition for pGCL.47

• scaling: multiplication by a non-negative constant distributes through
commands. Note first that wp.prog.(c ∗ postE) " c ∗ wp.prog.postE
directly from sublinearity.

46These properties are collected together in Sec. 5.6, and restated in Part II as
Defs. 5.6.3–5.6.5.

47Note how the general (1.21) implies the strictness condition wp.prog.0 ≡ 0, a direct
numeric embedding of Dijkstra’s Law of the Excluded Miracle.

30 1. Introduction to pGCL

For ! we have two cases: when c is zero, trivially from feasibility

wp.prog.(0 ∗ postE) ≡ wp.prog.0 ≡ 0 ≡ 0 ∗wp.prog.postE ;

and for the other case c 1= 0 we reason

wp.prog.(c ∗ postE)
≡ c(1/c) ∗ wp.prog.(c ∗ postE) c %= 0
! c ∗ wp.prog.((1/c)c ∗ postE)) sublinearity using 1/c

≡ c ∗ wp.prog.postE ,

thus establishing wp.prog.(c ∗ postE) ≡ c ∗ wp.prog.postE generally.
(See p. 53 for an example of scaling’s use.)

!

The remaining property we examine is so-called “probabilistic conjunc-
tivity.” Since standard conjunction “∧” is not defined over numbers, we
have many choices for a probabilistic analogue “&” of it, requiring only
that

0 & 0 = 0
0 & 1 = 0
1 & 0 = 0
1 & 1 = 1

(1.22)

for consistency with embedded Booleans.
Obvious possibilities for & are multiplication ∗ and minimum min, and

each of those has its uses; but neither satisfies anything like a generalisation
of conjunctivity. Return for example to the program of Fig. 1.5.1, and
consider its second statement

cc: = (A @ 1
3 | B @ 1

3 | C @ 1
3) .

Writing prog for the above, with postcondition [cc 1= C] min [cc 1= A] we
find

wp.prog.([cc 1= C] min [cc 1= A])
≡ wp.prog.[cc 1= C ∧ cc 1= A]
≡ wp.prog.[cc = B]
≡ 1/3
1≡ 2/3 min 2/3
≡ wp.prog.[cc 1= C] min wp.prog.[cc 1= A] .

Thus probabilistic programs do not distribute min in general, and we must
find something else. Instead we define

exp & exp′ : = exp + exp′ 5 1 , (1.23)

1.6. Healthiness and algebra for pGCL 31

whose right-hand side is inspired by sublinearity when c0, c1, c2 : = 1, 1, 1.
The operator is commutative; and if we restrict expectations to [0, 1] it is
associative as well. Note however that it is not idempotent.48

We now state a (sub-)distribution property for &, a direct consequence
of sublinearity.

sub-conjunctivity: the operator & sub-distributes through expectation
transformers. From sublinearity with c0, c1, c2 : = 1, 1, 1 we have

wp.prog.(postE & postE ′) " wp.prog.postE & wp.prog.postE ′

for all prog.

(Unfortunately there does not seem to be a full (≡) conjunctivity property
for expectation transformers.)

Beyond sub-conjunctivity, we say that & generalises conjunction for sev-
eral other reasons as well. The first is of course that it satisfies the standard
properties (1.22).

The second reason is that sub-conjunctivity (a consequence of sub-
linearity) implies “full” conjunctivity for standard programs. Standard
programs, containing no probabilistic choices, take standard [post]-style
post-expectations to standard pre-expectations: they are the embedding of
GCL in pGCL, and for standard prog we now show that

wp.prog.([post] & [post ′])
≡ wp.prog.[post] & wp.prog.[post ′] .

(1.24)

First note that “"” comes directly from sub-conjunctivity above, taking
postE, postE ′ to be [post] , [post ′].

For “!” we appeal to monotonicity, because [post] & [post ′] ! [post]
whence wp.prog.([post] & [post ′]) ! wp.prog.[post], and similarly for post ′.
Putting those together gives

wp.prog.([post] & [post ′]) ! wp.prog.[post] min wp.prog.[post ′] ,

by elementary arithmetic properties of !. But on standard expectations
— which wp.prog.[post] and wp.prog.[post ′] are, because prog is standard
— the operators min and & agree.

A last attribute linking & to ∧ comes straight from elementary prob-
ability theory. Let X and Y be two events, not necessarily independent:
then

if the probability of X is at least p, and the probability of Y is
at least q, the most that can be said in general about the joint
event X ∩ Y is that it has probability at least p & q.

48A binary operator / is idempotent just when x / x = x for all x.

32 1. Introduction to pGCL

To see this, we begin by recalling that for any events X, Y and any
probability distribution Pr we have49

Pr .(X ∩ Y)
= Pr .X + Pr .Y − Pr .(X ∪ Y)

≥ because Pr .(X ∪ Y) ≤ 1 and Pr .(X ∩ Y) ≥ 0

(Pr .X + Pr .Y − 1) % 0 .

We are not dealing with exact probabilities however: when demonic non-
determinism is present we have only lower bounds. Thus we address the
question

Given only Pr .X ≥ p and Pr .Y ≥ q, what is the most precise
lower bound for Pr .(X ∩ Y) in terms of p and q?

From the reasoning above we obtain

(p + q − 1) % 0 (1.25)

immediately as a lower bound. But to see that it is the greatest lower bound
we must show that for any X, Y, p, q there is a probability distribution
Pr such that the bound is attained; and that is illustrated in Fig. 1.6.3,
where an explicit distribution is given in which Pr .X = p, Pr .Y = q and
Pr .(X ∩ Y) is as low as possible, reaching (p + q − 1) % 0 exactly.

Returning to our example, but using &, we now have equality:

wp.prog.([cc 1= C] & [cc 1= A])
≡ wp.prog.[cc = B]
≡ 1/3
≡ 2/3 & 2/3
≡ wp.prog.[cc 1= C] & wp.prog.[cc 1= A] .

The & operator also plays a crucial role in the proof (Chap. 7) of our
probabilistic loop rule, presented in Chap. 2 and used in the examples to
come.

1.7 Healthiness example: modular reasoning

As an example of the use of healthiness conditions, we formulate and prove
a simple but very powerful property of pGCL programs, important for
“modular” reasoning about them.

By modular reasoning in this case we mean determining, first, that a
program prog of interest has some standard property; then for subsequent
(possibly probabilistic) reasoning we assume that property. This makes

49The first step is the modularity law for probabilities.

1.7. Healthiness example: modular reasoning 33

(p + q − 1) 2 0

p " (1 − q) q " (1 − p)

X Y

Pr .X = p " (1 − q) + (p + q − 1) 2 0 = p
Pr .Y = q " (1 − p) + (p + q − 1) 2 0 = q

Pr .(X ∩ Y) = (p + q − 1) 2 0 = p & q

The lower bound p & q is the best possible.

Figure 1.6.3. Probabilistic conjunction & depicted

the reasoning modular in the sense that we do not have to prove all the
properties at once.50

We formulate the principle as a lemma.

Lemma 1.7.1 Modular reasoning Suppose for some program prog
and predicates pre and post we have

[pre] ! wp.prog.[post] , (1.26)

which is just the embedded form of a standard Hoare-triple specification.
Then in any state satisfying pre we have for any bounded post-expectations
postE, postE ′ that

wp.prog.postE = wp.prog.postE ′ , 51

provided post implies that postE and postE ′ are equal.
That is, with (1.26) we can assume the truth of post when reasoning

about the post-expectation, provided pre holds in the initial state.

50A typical use of this appeals to standard reasoning, in a “first pass,” to establish
that some (Boolean) property — such as a variable’s typing — is invariant in a program;
then, in the “second pass” during which probabilistic reasoning might be carried out, we
can assume that invariant everywhere without comment. Recall Footnote 43 on p. 28;
see also the treatment of Fig. 7.7.11 on p. 211 to come.

51We write “=” rather than “≡” because the equality holds only in some states
(those satisfying pre), as indicated in the text above. Thus writing “≡, !, "” as we
do elsewhere is just an alternative for the text “in all states”.

34 1. Introduction to pGCL

Proof : We use the healthiness conditions of the previous section, and
we assume that the post-expectations postE, postE ′ are bounded above by
some nonzero M . Given that the current state satisfies pre, we then have

wp.prog.([post] ∗ postE)
= M ∗ wp.prog.([post] ∗ postE/M) scaling

= M ∗ wp.prog.([post] & (postE/M)) [post] is standard;
postE/M ! 1

≥ M ∗ (wp.prog.[post] & wp.prog.(postE/M)) sub-conjunctivity

≥ M ∗ ([pre] & wp.prog.(postE/M)) Assumption (1.26)
= M ∗ (1 & wp.prog.(postE/M)) pre holds in current state

= M ∗ wp.prog.(postE/M) arithmetic

= wp.prog.postE . scaling

The opposite inequality is immediate (in all states) from the monotonicity
healthiness property, since [post] ∗ postE ! postE. Thus, still assuming pre
in the current state, we conclude with

wp.prog.postE
= wp.prog.([post] ∗ postE) above

= wp.prog.([post] ∗ postE ′) assumption about postE, postE ′

= wp.prog.postE ′ . as above, but for postE ′

!

This kind of reasoning is nothing new for standard programs, and indeed
is usually taken for granted (although its formal justification appeals to
conjunctivity). It is important that it is available in pGCL as well.52

1.8 Interaction between probabilistic-
and demonic choice

We conclude with some illustrations of the interaction of demonic and prob-
abilistic choice. Consider two variables x, y, one chosen demonically and
the other probabilistically. Suppose first that x is chosen demonically and
y probabilistically, and take post-expectation [x = y]. Then

52Lem. 1.7.1 holds even when postE, postE ′ are unbounded, provided of course that
wp.prog is defined for them; the proof of that can be given by direct reference to the
definition of wp over the model, as set out in Chap. 5.

We will need that extension for our occasional excursions beyond the “safe” bounded
world we have formally dealt with in the logic (e.g. Sections 2.11 and 3.3).

1.9. Summary 35

wp.((x: = 1 # x: = 2); (y: = 1 1
2
⊕ y: = 2)).[x = y]

≡ wp.(x: = 1 # x: = 2).([x = 1] /2 + [x = 2] /2)
≡ ([1 = 1] /2 + [1 = 2] /2) min ([2 = 1] /2 + [2 = 2] /2)
≡ (1/2 + 0/2) min (0/2 + 1/2)
≡ 1/2 ,

from which we see that program establishes x = y with probability at least
1/2: no matter which value is assigned to x, with probability 1/2 the second
command will assign the same to y.

Now suppose instead that it is the second choice that is demonic. Then
we have

wp.((x: = 1 1
2
⊕ x: = 2); (y: = 1 # y: = 2)).[x = y]

≡ wp.(x: = 1 1
2
⊕ x: = 2).([x = 1] min [x = 2])

≡ ([1 = 1] min [1 = 2])/2 + ([2 = 1] min [2 = 2])/2
≡ (1 min 0)/2 + (0 min 1)/2
≡ 0 ,

reflecting that no matter what value is assigned probabilistically to x, the
demon could choose subsequently to assign a different value to y.

Thus it is clear that the execution order of occurrence of the two choices
plays a critical role in their interaction, and in particular that the demon
in the first case cannot make the assignment “clairvoyantly” to x in order
to avoid the value that later will be assigned to y.

1.9 Summary

Being able to reason formally about probabilistic programs does not of
course remove per se the complexity of the mathematics on which they rely:
we do not now expect to find astonishingly simple correctness proofs for
all the large collection of randomised algorithms that have been developed
over the decades [MR95]. However it should be possible in principle to
locate and determine reliably what are the probabilistic/mathematical facts
the construction of a randomised algorithm needs to exploit. . . which is
of course just what standard predicate transformers do for conventional
algorithms.

In the remainder of Part I we concentrate on proof rules that can be
derived for pGCL — principally for loops — and on examples.

The theory of expectation transformers with nondeterminism is given
in Part II, where in particular the role of sublinearity is identified and
proved: it characterises a subspace of the predicate transformers that has
an equivalent operational semantics of relations between initial and final
probabilistic distributions over the state space — a formalisation of the

36 1. Introduction to pGCL

gambling game of Sec. 1.3. All the programming constructs of the prob-
abilistic language of guarded commands belong to that subspace, which
means that the programmer who uses the language can elect to reason
about it either axiomatically or operationally.

Chapter notes

In the mid-1970’s, Rabin demonstrated how randomisation could be used to solve
a variety of programming problems [Rab76]; since then, the range of applications
has increased considerably [MR95], and indeed we analyse several of them as case
studies in later chapters. In the meantime — fuelled by randomisation’s impres-
sive applicability — the search for an effective logic of probabilistic programs
became an important research topic around the beginning of the 1980’s, and
remained so until the mid-1990’s. Ironically, the major technical difficulty was
due, in the main, to one of standard programming’s major successes: demonic
nondeterminism, the basis for abstraction. It was a challenging problem to de-
cide what to do about it, and how it should interact with the new probabilistic
nondeterminism.

The first probabilistic logics did not treat demonic nondeterminism at all —
Feldman and Harel [FH84] for instance proved soundness and completeness for
a probabilistic PDL which was (in our terms) purely deterministic. The logical
language allowed statements about programs to be made at the level of probabil-
ity distributions and, as we discuss in Sec. A.2, that proves to be an impediment
to the natural introduction of a demon. A Hoare-style logic based on similar
principles has also been explored by den Hartog and de Vink [dHdV02].

The crucial step of a quantitative logic of expectations was taken by Kozen
[Koz85]. Subsequently Jones [Jon90], with Plotkin and using the evaluations from
earlier work of Saheb-Djahromi [SD80] that were based directly on topologies
rather than on σ- or Borel algebras, worked on more general probabilistic pow-
erdomains; as an example of her technique she specialised it to the Kozen-style
logic for deterministic programs, resulting in the sub-probability measures that
provide a neat way to quantify nontermination.53

In 1997 He et al. [HSM97] finally proposed the operational model containing

all the ingredients for a full treatment of abstraction and program refine-

ment in the context of probability — and that model paved the way for the
“demonic/probabilistic” program logic based on expectation transformers. Sub-

sequently Ying [Yin03] has worked towards a probabilistic refinement calculus in

the style of Back [BvW98].

53The notion of sub-probability measures to characterise termination was present much
earlier, for example in the work of Feldman and Harel [FH84].

